8 research outputs found
Recommended from our members
Integration of Inkjet Printed Graphene as a Hole Transport Layer in Organic Solar Cells
Peer reviewed: TrueAcknowledgements: Thanks to Assoz. Univ. Markus Clark Scharber for fruitful discussions and helpful advice.This work demonstrates the green production of a graphene ink for inkjet printing and its use as a hole transport layer (HTL) in an organic solar cell. Graphene as an HTL improves the selective hole extraction at the anode and prevents charge recombination at the electronic interface and metal diffusion into the photoactive layer. Graphite was exfoliated in water, concentrated by iterative centrifugation, and characterized by Raman. The concentrated graphene ink was incorporated into inverted organic solar cells by inkjet printing on the active polymer in an ambient atmosphere. Argon plasma was used to enhance wetting of the polymer with the graphene ink during printing. The argon plasma treatment of the active polymer P3HT:PCBM was investigated by XPS, AFM and contact angle measurements. Efficiency and lifetime studies undertaken show that the device with graphene as HTL is fully functional and has good potential for an inkjet printable and flexible alternative to PEDOT:PSS
A green neutral state donor-acceptor copolymer for organic solar cells
We report on the photophysical and photovoltaic properties of a low band gap polymer bearing a quinoxaline moiety, poly(2,3-bis(3,4-bis(decyloxy)phenyl)-5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)quinoxaline) PDOPEQ, as an electron donor in bulk heterojunction solar cells blended with the acceptor 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene (PCBM). Devices were composed of PDOPEQ and varying amounts of PCBM (1 : 1, 1 : 2, 1 : 3, 1 : 4 w-w ratio). The components were spun cast from chlorobenzene (CB) and characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. The devices with 1: 3 polymer to PCBM ratio exhibited short circuit current density (Jsc) of 0.8 mA cm(-2), an open circuit voltage (Voc) of 0.2 V, and a fill factor (FF) of 0.3. Incident photon to current efficiency (IPCE) is also reported. The IPCE spectrum spans from 400 nm to 800 nm and exhibits a photocurrent contribution of ca. 5.5% at around 400 nm. The nanoscale morphology was investigated with atomic force microscopy (AFM). Photoinduced absorption spectroscopy confirms the photoinduced charge transfer in such donor acceptor blends
Photovoltaic and photophysical properties of a novel bis-3-hexylthiophelle substituted quinoxaline derivative
We report on the photophysical properties and photovoltaic performance of a polythiophene derivative, poly-2,3-bis(4-tert-butylphenyl)-5,8-bis(4-hexylthiophen-2-yl)quinoxaline(PHTQ) as an electron donor in bulk heterojunction Solar Cells blended with the acceptor 1-(3-met hoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerence (PCBM). Devices were composed of PHTQ and varying amounts of PCBM (1:1, 1:2, 1:3, 1:4 w-w ratio). The components were spin cast from ortho-dichlorobenzene (ODCB) and characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Efficiencies up to 0.3% have been reached. Incident photon to current efficiency (IPCE) is reported and the nanoscale morphology was investigated with atomic force microscopy (AFM). Photoinduced absorption spectroscopy confirms the photoinduced charge transfer in such donor acceptor blends
Cure kinetics of bismaleimides as basis for polyimidelike inks for PolyJet3Dprinting
Since polyimides are well known for their excellent chemical and thermal stability and outstanding mechanical properties there is increasing interest in developing polyimidebased inks to produce additively manufactured parts with properties superior to those of currently available materials. Usage of bismaleimides (BMI) as precursors allows polyimides to be fabricated via PolyJet printing (Stratasys Ltd., Rehovot, Israel). Characterization of the curing kinetics is a central part of process development, as fast curing initiated by UV light is desired. Here, a comprehensive study of thermal and UV curing of BMI oligomers with various molecular weights and chemical structures is presented. Fourier transform infrared spectroscopy serves as a tool for determining the curing degree. Furthermore, an estimation of the activation energy for thermal curing is performed. UV curing of the selected BMIs leads to highly crosslinked, thermoset polymers with excellent chemical resistance and thermal stability which are of great interest for PolyJet 3D printing.685937(VLID)356919
The N-terminal peptide of the transglutaminase-activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross-linking sites.
Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, i. e. determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues, respectively. Structural integrity of the mutants was verified by determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analyzed, which superposes well with SSI-family proteins. This article is protected by copyright. All rights reserved
The N‐terminal peptide of the transglutaminase‐activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross‐linking sites
Streptomyces mobaraensis is a key player for the industrial production of the protein cross‐linking enzyme microbial transglutaminase (MTG). Extra‐cellular activation of MTG by the transglutaminase‐activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross‐linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N‐terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N‐terminally shortened variants clearly indicated the highly conserved Leu40‐Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40‐Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X‐ray crystallography. While no structural data could be obtained for the N‐terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI‐family proteins