402 research outputs found

    Near-field coupling of gold plasmonic antennas for sub-100 nm magneto-thermal microscopy

    Full text link
    The development of spintronic technology with increasingly dense, high-speed, and complex devices will be accelerated by accessible microscopy techniques capable of probing magnetic phenomena on picosecond time scales and at deeply sub-micron length scales. A recently developed time-resolved magneto-thermal microscope provides a path towards this goal if it is augmented with a picosecond, nanoscale heat source. We theoretically study adiabatic nanofocusing and near-field heat induction using conical gold plasmonic antennas to generate sub-100 nm thermal gradients for time-resolved magneto-thermal imaging. Finite element calculations of antenna-sample interactions reveal focused electromagnetic loss profiles that are either peaked directly under the antenna or are annular, depending on the sample's conductivity, the antenna's apex radius, and the tip-sample separation. We find that the thermal gradient is confined to 40 nm to 60 nm full width at half maximum for realistic ranges of sample conductivity and apex radius. To mitigate this variation, which is undesirable for microscopy, we investigate the use of a platinum capping layer on top of the sample as a thermal transduction layer to produce heat uniformly across different sample materials. After determining the optimal capping layer thickness, we simulate the evolution of the thermal gradient in the underlying sample layer, and find that the temporal width is below 10 ps. These results lay a theoretical foundation for nanoscale, time-resolved magneto-thermal imaging.Comment: 24 pages including Supporting Information, 6 figures in the main text, 4 supporting figure

    Optical Dipole Structure and Orientation of GaN Defect Single-Photon Emitters

    Full text link
    GaN has recently been shown to host bright, photostable, defect single photon emitters in the 600-700 nm wavelength range that are promising for quantum applications. The nature and origin of these defect emitters remain elusive. In this work, we study the optical dipole structures and orientations of these defect emitters using the defocused imaging technique. In this technique, the far-field radiation pattern of an emitter in the Fourier plane is imaged to obtain information about the structure of the optical dipole moment and its orientation in 3D. Our experimental results, backed by numerical simulations, show that these defect emitters in GaN exhibit a single dipole moment that is oriented almost perpendicular to the wurtzite crystal c-axis. Data collected from many different emitters shows that the angular orientation of the dipole moment in the plane perpendicular to the c-axis exhibits a distribution that shows peaks centered at the angles corresponding to the nearest Ga-N bonds and also at the angles corresponding to the nearest Ga-Ga (or N-N) directions. Moreover, the in-plane angular distribution shows little difference among defect emitters with different emission wavelengths in the 600-700 nm range. Our work sheds light on the nature and origin of these GaN defect emitters.Comment: 15 pages, 4 figure

    Nanoscale magnetization and current imaging using scanning-probe magneto-thermal microscopy

    Full text link
    Magnetic microscopy that combines nanoscale spatial resolution with picosecond scale temporal resolution uniquely enables direct observation of the spatiotemporal magnetic phenomena that are relevant to future high-speed, high-density magnetic storage and logic technologies. Magnetic microscopes that combine these metrics has been limited to facility-level instruments. To address this gap in lab-accessible spatiotemporal imaging, we develop a time-resolved near-field magnetic microscope based on magneto-thermal interactions. We demonstrate both magnetization and current density imaging modalities, each with spatial resolution that far surpasses the optical diffraction limit. In addition, we study the near-field and time-resolved characteristics of our signal and find that our instrument possesses a spatial resolution on the scale of 100 nm and a temporal resolution below 100 ps. Our results demonstrate an accessible and comparatively low-cost approach to nanoscale spatiotemporal magnetic microscopy in a table-top form to aid the science and technology of dynamic magnetic devices with complex spin textures

    Excited-state spin-resonance spectroscopy of VB−_\text{B}^- defect centers in hexagonal boron nitride

    Full text link
    The recently discovered spin-active boron vacancy (VB−_\text{B}^-) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is consistent with an orbital-singlet, which has consequences for understanding the symmetry of this defect. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.Comment: 13 pages with 5 figures and a supplemen
    • …
    corecore