8,374 research outputs found

    Topological Strings and Quantum Spectral Problems

    Get PDF
    We consider certain quantum spectral problems appearing in the study of local Calabi-Yau geometries. The quantum spectrum can be computed by the Bohr-Sommerfeld quantization condition for a period integral. For the case of small Planck constant, the periods are computed perturbatively by deformation of the Omega background parameters in the Nekrasov-Shatashvili limit. We compare the calculations with the results from the standard perturbation theory for the quantum Hamiltonian. There have been proposals in the literature for the non-perturbative contributions based on singularity cancellation with the perturbative contributions. We compute the quantum spectrum numerically with some high precisions for many cases of Planck constant. We find that there are also some higher order non-singular non-perturbative contributions, which are not captured by the singularity cancellation mechanism. We fix the first few orders formulas of such corrections for some well known local Calabi-Yau models.Comment: 47 pages, 3 figures. v2: journal version, typos correcte

    Features and stability analysis of non-Schwarzschild black hole in quadratic gravity

    Full text link
    Black holes are found to exist in gravitational theories with the presence of quadratic curvature terms and behave differently from the Schwarzschild solution. We present an exhaustive analysis for determining the quasinormal modes of a test scalar field propagating in a new class of black hole backgrounds in the case of pure Einstein-Weyl gravity. Our result shows that the field decay of quasinormal modes in such a non-Schwarzschild black hole behaves similarly to the Schwarzschild one, but the decay slope becomes much smoother due to the appearance of the Weyl tensor square in the background theory. We also analyze the frequencies of the quasinormal modes in order to characterize the properties of new back holes, and thus, if these modes can be the source of gravitational waves, the underlying theories may be testable in future gravitational wave experiments. We briefly comment on the issue of quantum (in)stability in this theory at linear order.Comment: 18 pages, 4 figures, 1 table, several references added, version published on JHE

    Gauge invariant hydrogen atom Hamiltonian

    Full text link
    For quantum mechanics of a charged particle in a classical external electromagnetic field, there is an apparent puzzle that the matrix element of the canonical momentum and Hamiltonian operators is gauge dependent. A resolution to this puzzle is recently provided by us in [2]. Based on the separation of the electromagnetic potential into pure gauge and gauge invariant parts, we have proposed a new set of momentum and Hamiltonian operators which satisfy both the requirement of gauge invariance and the relevant commutation relations. In this paper we report a check for the case of the hydrogen atom problem: Starting from the Hamiltonian of the coupled electron, proton and electromagnetic field, under the infinite proton mass approximation, we derive the gauge invariant hydrogen atom Hamiltonian and verify explicitly that this Hamiltonian is different from the Dirac Hamiltonian, which is the time translation generator of the system. The gauge invariant Hamiltonian is the energy operator, whose eigenvalue is the energy of the hydrogen atom. It is generally time-dependent. In this case, one can solve the energy eigenvalue equation at any specific instant of time. It is shown that the energy eigenvalues are gauge independent, and by suitably choosing the phase factor of the time-dependent eigenfunction, one can ensure that the time-dependent eigenfunction satisfies the Dirac equation.Comment: 7 pages, revtex4, some further discussion on Dirac Hamiltonian and the gauge invariant Hamiltonian is added, one reference removed; new address of some of the authors added, final version to appear in Phys. Rev.

    Numerical Study on Mass Transfer Performance of a Spiral-like Interconnector for Planner Solid Oxide Fuel Cells

    Get PDF
    AbstractIn order to transfer more fuel of a planner SOFC (Solid Oxide Fuel Cell) from gas channel into porous anode, this paper has designed a novel spiral-like SOFC interconnector, a 3-D model is made by COMSOL 3.5a and the cell was operated with the mixture of H2 and H2O as fuel at 1023K. The result shows that, compared with conventional direct channel interconnectors, the new interconnector in this paper could not only improve the gas velocity parallel to the TPB(Triple Phase Boundary), but also with much higher gas velocity perpendicular to it, which has led to the H2 molar fraction close to the TPB in anode is almost two orders of magnitude higher than that of director channel interconnector SOFC, which would be helpful to improve the electrical performance of SOFCs
    • …
    corecore