355 research outputs found

    Hyperon Electromagnetic Properties in Two-Flavor Chiral Perturbation Theory

    Full text link
    The pion mass dependence of hyperon electromagnetic properties is determined using two-flavor heavy baryon chiral perturbation theory. Specifically we compute chiral corrections to the charge radii, magnetic moments, and magnetic radii of the spin one-half hyperons, as well as the charge radii, magnetic moments, magnetic radii, electric quadrupole moments, and quadrupole radii of the spin three-half hyperons. Results for the nucleon and delta are also included. Efficacy of the two-flavor theory is investigated by analyzing the role played by virtual kaons. For the electromagnetic properties of spin one-half hyperons, kaon loop contributions are shown to be well described by terms analytic in the pion mass squared. Similarly kaon contributions to the magnetic moments of spin three-half hyperons are well described in the two-flavor theory. The remaining electromagnetic properties of spin three-half resonances can be described in two-flavor chiral perturbation theory, however, this description fails just beyond the physical pion mass. For the case of experimentally known hyperon magnetic moments and charge radii, we demonstrate that chiral corrections are under reasonable control, in contrast to the behavior of these observables in the three-flavor chiral expansion. The formulae we derive are ideal for performing the pion mass extrapolation of lattice QCD data obtained at the physical strange quark mass.Comment: 29 pages, 7 figures, v3: published versio

    Hyperon Axial Charges in Two-Flavor Chiral Perturbation Theory

    Full text link
    We use two-flavor heavy baryon chiral perturbation theory to investigate the isovector axial charges of the spin one-half hyperons. Expressions for these hyperon axial charges are derived at next-to-leading order in the chiral expansion. We utilize phenomenological and lattice QCD inputs to assess the convergence of the two-flavor theory, which appears to be best for cascades.Comment: 4 pages, 1 figures, published versio

    Real-time simulation of non-equilibrium transport of magnetization in large open quantum spin systems driven by dissipation

    Get PDF
    Using quantum Monte Carlo, we study the non-equilibrium transport of magnetization in large open strongly correlated quantum spin 12\frac{1}{2} systems driven by purely dissipative processes that conserve the uniform or staggered magnetization. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.Comment: 6 pages, 5 figures. Revised version: Discussion extended and references adde

    Chiral Corrections to Hyperon Axial Form Factors

    Full text link
    We study the complete set of flavor changing hyperon axial current matrix elements at small momentum transfer. Using partially quenched heavy baryon chiral perturbation theory, we derive the chiral and momentum behavior of the axial and induced pseudoscalar form factors. The meson pole contributions to the latter posses a striking signal for chiral physics. We argue that the study of hyperon axial matrix elements enables a systematic lattice investigation of the efficacy of three flavor chiral expansions in the baryon sector. This can be achieved by considering chiral corrections to SU(3) symmetry predictions, and their partially quenched generalizations. In particular, despite the presence of eight unknown low-energy constants, we are able to make next-to-leading order symmetry breaking predictions for two linear combinations of axial charges.Comment: 23 pages, 3 figures, typos corrected and a new NLO prediction adde

    Flavor Twisted Boundary Conditions in the Breit Frame

    Full text link
    We use a generalization of chiral perturbation theory to account for the effects of flavor twisted boundary conditions in the Breit frame. The relevant framework for two light flavors is an SU(6|4) partially quenched theory, where the extra valence quarks differ only by their boundary conditions. Focusing on the pion electromagnetic form factor, finite volume corrections are calculated at next-to-leading order in the chiral expansion and are estimated to be small on current lattices.Comment: 4 pages, 1 figure, discussion and citations altere
    • …
    corecore