30,553 research outputs found

    Effect of Decoherence on the Dynamics of Bose-Einstein Condensates in a Double-well Potential

    Full text link
    We study the dynamics of a Bose-Einstein condensate in a double-well potential in the mean-field approximation. Decoherence effects are considered by analyzing the couplings of the condensate to environments. Two kinds of coupling are taken into account. With the first kind of coupling dominated, the decoherence can enhance the self-trapping by increasing the damping of the oscillations in the dynamics, while the decoherence from the second kind of condensate-environment coupling leads to spoiling of the quantum tunneling and self-trapping.Comment: for color figures, see PR

    Broadband lightcurve characteristics of GRBs 980425 and 060218 and comparison with long-lag, wide-pulse GRBs

    Full text link
    It has been recently argued that low-luminosity gamma-ray bursts (LL-GRBs) are likely a unique GRB population. Here, we present systematic analysis of the lightcurve characteristics from X-ray to gamma-ray energy bands for the two prototypical LL-GRBs 980425 and 060218. It is found that both the pulse width (ww) and the ratio of the rising width to the decaying width (r/dr/d) of theses two bursts are energy-dependent over a broad energy band. There exists a significant trend that the pulses tend to be narrower and more symmetry with respect to the higher energy bands for the two events. Both the X-rays and the gamma-rays follow the same wEw - E and r/dEr/d - E relations. These facts may indicate that the X-ray emission tracks the gamma-ray emission and both are likely to be originated from the same physical mechanism. Their light curves show significant spectral lags. We calculate the three types of lags with the pulse peaking time (tpeakt_{peak}), the pulse centroid time (tcent_{cen}), and the cross-correlation function (CCF). The derived tpeakt_{peak} and tcent_{cen} are a power-law function of energy. The lag calculated by CCF is strongly correlated with that derived from tpeakt_{peak}. But the lag derived from tcent_{cen} is less correlated with that derived from tpeakt_{peak} and CCF. The energy dependence of the lags is shallower at higher energy bands. These characteristics are well consistent with that observed in typical long-lag, wide-pulse GRBs, suggesting that GRBs 980425 and 060218 may share the similar radiation physics with them.Comment: 26 pages, 10 figures, 3 tables, accepted for publication in Ap

    Chaotic Properties of Subshifts Generated by a Non-Periodic Recurrent Orbit

    Full text link
    The chaotic properties of some subshift maps are investigated. These subshifts are the orbit closures of certain non-periodic recurrent points of a shift map. We first provide a review of basic concepts for dynamics of continuous maps in metric spaces. These concepts include nonwandering point, recurrent point, eventually periodic point, scrambled set, sensitive dependence on initial conditions, Robinson chaos, and topological entropy. Next we review the notion of shift maps and subshifts. Then we show that the one-sided subshifts generated by a non-periodic recurrent point are chaotic in the sense of Robinson. Moreover, we show that such a subshift has an infinite scrambled set if it has a periodic point. Finally, we give some examples and discuss the topological entropy of these subshifts, and present two open problems on the dynamics of subshifts

    On QGP Formation in pp Collisions at 7 TeV

    Full text link
    The possibility of QGP formation in central pp collisions at ultra-high collision energy is discussed. Centrality-dependent \pt-spectra and (pseudo)rapidity spectra of thermal photons (charged hadrons) from pp collisions at 7 TeV are presented (addressed). Minimal-bias \pt-spectrum of direct photons and charged hadrons is compared under the framework with and without hydrodynamical evolution process.Comment: 4pages, 5figs, submitted to the Proceedings of the 22nd International Conference on Ultra-relativistic Nucleus-Nucleus Collision (Quark Matter 2011), 23 - 28 May 2011, Annecy, Franc

    Two-component model for the chemical evolution of the Galactic disk

    Get PDF
    In the present paper, we introduce a two-component model of the Galactic disk to investigate its chemical evolution. The formation of the thick and thin disks occur in two main accretion episodes with both infall rates to be Gaussian. Both the pre-thin and post-thin scenarios for the formation of the Galactic disk are considered. The best-fitting is obtained through χ2\chi^2-test between the models and the new observed metallicity distribution function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results show that post-thin disk scenario for the formation of the Galactic disk should be preferred. Still, other comparison between model predictions and observations are given.Comment: 23 pages, 7 figure
    corecore