13,597 research outputs found

    Heavy Pseudoscalar Twist-3 Distribution Amplitudes within QCD Theory in Background Fields

    Full text link
    In this paper, we study the properties of the twist-3 distribution amplitude (DA) of the heavy pseudo-scalars such as ηc\eta_c, BcB_c and ηb\eta_b. New sum rules for the twist-3 DA moments \left_{\rm HP} and \left_{\rm HP} up to sixth orders and up to dimension-six condensates are deduced under the framework of the background field theory. Based on the sum rules for the twist-3 DA moments, we construct a new model for the two twist-3 DAs of the heavy pseudo-scalar with the help of the Brodsky-Huang-Lepage prescription. Furthermore, we apply them to the Bc→ηcB_c\to\eta_c transition form factor (f+Bc→ηc(q2)f^{B_c\to\eta_c}_+(q^2)) within the light-cone sum rules approach, and the results are comparable with other approaches. It has been found that the twist-3 DAs ϕ3;ηcP\phi^P_{3;\eta_c} and ϕ3;ηcσ\phi^\sigma_{3;\eta_c} are important for a reliable prediction of f+Bc→ηc(q2)f^{B_c\to\eta_c}_+(q^2). For example, at the maximum recoil region, we have f+Bc→ηc(0)=0.674±0.066f^{B_c\to\eta_c}_+(0) = 0.674 \pm 0.066, in which those two twist-3 terms provide ∼33%\sim33\% and ∼22%\sim22\% contributions. Also we calculate the branching ratio of the semi-leptonic decay Bc→ηclνB_c \to\eta_c l\nu as Br(Bc→ηclν)=(9.31−2.01+2.27)×10−3Br(B_c \to\eta_c l\nu) = \left( 9.31^{+2.27}_{-2.01} \right) \times 10^{-3}.Comment: 12 pages, 16 figure

    The Algorithmic Complexity of Bondage and Reinforcement Problems in bipartite graphs

    Full text link
    Let G=(V,E)G=(V,E) be a graph. A subset D⊆VD\subseteq V is a dominating set if every vertex not in DD is adjacent to a vertex in DD. The domination number of GG, denoted by γ(G)\gamma(G), is the smallest cardinality of a dominating set of GG. The bondage number of a nonempty graph GG is the smallest number of edges whose removal from GG results in a graph with domination number larger than γ(G)\gamma(G). The reinforcement number of GG is the smallest number of edges whose addition to GG results in a graph with smaller domination number than γ(G)\gamma(G). In 2012, Hu and Xu proved that the decision problems for the bondage, the total bondage, the reinforcement and the total reinforcement numbers are all NP-hard in general graphs. In this paper, we improve these results to bipartite graphs.Comment: 13 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1109.1657; and text overlap with arXiv:1204.4010 by other author
    • …
    corecore