30 research outputs found
Validating quantum-supremacy experiments with exact and fast tensor network contraction
The quantum circuits that declare quantum supremacy, such as Google Sycamore
[Nature \textbf{574}, 505 (2019)], raises a paradox in building reliable result
references. While simulation on traditional computers seems the sole way to
provide reliable verification, the required run time is doomed with an
exponentially-increasing compute complexity. To find a way to validate current
``quantum-supremacy" circuits with more than qubits, we propose a
simulation method that exploits the ``classical advantage" (the inherent
``store-and-compute" operation mode of von Neumann machines) of current
supercomputers, and computes uncorrelated amplitudes of a random quantum
circuit with an optimal reuse of the intermediate results and a minimal memory
overhead throughout the process. Such a reuse strategy reduces the original
linear scaling of the total compute cost against the number of amplitudes to a
sublinear pattern, with greater reduction for more amplitudes. Based on a
well-optimized implementation of this method on a new-generation Sunway
supercomputer, we directly verify Sycamore by computing three million exact
amplitudes for the experimentally generated bitstrings, obtaining an XEB
fidelity of which closely matches the estimated value of .
Our computation scales up to cores with a sustained
single-precision performance of Pflops, which is accomplished within
days. Our method has a far-reaching impact in solving quantum many-body
problems, statistical problems as well as combinatorial optimization problems
where one often needs to contract many tensor networks which share a
significant portion of tensors in common.Comment: 7 pages, 4 figures, comments are welcome
Scheme construction with numerical flux residual correction (NFRC) and group velocity control (GVC)
For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems
directnumericalsimulationofaspatiallyevolvingsupersonicturbulentboundarylayeratma6
Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibilty effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely to occur
SCIENCE IN CHINA (Series G) Evolution of three-dimensional coherent structures in compressible axisymmetric jet
Abstract A high order difference scheme is used to simulate the spatially developing compressible axisymmetric jet. The results show that the Kelvin-Helmholtz instability appears first when the jet loses its stability, and then with development of jet the increase in nonlinear effects leads to the secondary instability and the formation of the streamwise vortices. The evolution of the threedimensional coherent structure is presented. The computed results verify that in axisymmetric jet the secondary instability and formation of the streamwise vortices are the important physical mechanism of enhancing the flow mixing and transition occurring