50,966 research outputs found
Thermal-stress analysis for a wood composite blade
A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report
Thermal stress analysis for a wood composite blade
Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented
Thermal-stress analysis for wood composite blade
The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples
Probing Neutral Majorana Fermion Edge Modes with Charge Transport
We propose two experiments to probe the Majorana fermion edge states that
occur at a junction between a superconductor and a magnet deposited on the
surface of a topological insulator. Combining two Majorana fermions into a
single Dirac fermion on a magnetic domain wall allows the neutral Majorana
fermions to be probed with charge transport. We will discuss a novel
interferometer for Majorana fermions, which probes their Z_2 phase. This setup
also allows the transmission of neutral Majorana fermions through a point
contact to be measured. We introduce a point contact formed by a
superconducting junction and show that its transmission can be controlled by
the phase difference across the junction. We discuss the feasibility of these
experiments using the recently discovered topological insulator Bi_2 Se_3.Comment: 4 page
Phase properties of hypergeometric states and negative hypergeometric states
We show that the three quantum states (Plya states, the
generalized non-classical states related to Hahn polynomials and negative
hypergeometric states) introduced recently as intermediates states which
interpolate between the binomial states and negative binomial states are
essentially identical. By using the Hermitial-phase-operator formalism, the
phase properties of the hypergeometric states and negative hypergeometric
states are studied in detail. We find that the number of peaks of phase
probability distribution is one for the hypergeometric states and for the
negative hypergeometric states.Comment: 7 pages, 4 figure
Reflection high-energy electron diffraction studies of the growth of lnAs/Ga_(1-x)In_xSb strained-layer superlattices
We have used reflection highâenergy electron diffraction to study the surface periodicity of the growth front of InAs/GaInSb strainedâlayer superlattices (SLSs). We found that the apparent surface lattice spacing reproducibly changed during layers which subsequent xâray measurements indicated were coherently strained. Abrupt changes in the measured streak spacings were found to be correlated to changes in the growth flux. The profile of the dynamic streak spacing was found to be reproducible when comparing consecutive periods of a SLSs or different SLSs employing the same shuttering scheme at the InAs/GaInSb interface. Finally, when the interface shuttering scheme was changed, it was found that the dynamic streak separation profile also changed. Large changes in the shuttering scheme led to dramatic differences in the streak separation profile, and small changes in the shuttering scheme led to minor changes in the profile. In both cases, the differences in the surface periodicity profile occurred during the parts of the growth where the incident fluxes differed
The Influence of Material Modification and Residues on Space Charge Accumulation in XLPE for DC Power Cable Application
The effects of material modification and cross-linking by-products (residues) quantity on space charge accumulation and decay in XLPE have been investigated using the pulsed electro-acoustic technique. The threshold stress for space charge generation during voltage-ramping was found to show considerable variation and to depend upon the material and the amount of residue present. However, the modified XLPE material was found to exhibit a higher threshold for space charge accumulation than the reference XLPE whatever the conditions. De-gassed samples were found to exhibit the highest threshold stress, with that of the modified de-gassed XLPE accumulating no space charge at all even after 24 hours stressing at 70kV. In general heterocharge regions were formed when the residues were present and homocharge or no charge was formed when the residues were removed by degassing. Differences were also found in the space charge decay following short-circuit (volts-off), with the decay of heterocharge being rapid, whereas that of homocharge was slow. A tentative explanation is offered to explain these features
Optimal nonlocal multipartite entanglement concentration based on projection measurements
We propose an optimal nonlocal entanglement concentration protocol (ECP) for
multi-photon systems in a partially entangled pure state, resorting to the
projection measurement on an additional photon. One party in quantum
communication first performs a parity-check measurement on her photon in an
N-photon system and an additional photon, and then she projects the additional
photon into an orthogonal Hilbert space for dividing the original -photon
systems into two groups. In the first group, the N parties will obtain a subset
of -photon systems in a maximally entangled state. In the second group, they
will obtain some less-entangled N-photon systems which are the resource for the
entanglement concentration in the next round. By iterating the entanglement
concentration process several times, the present ECP has the maximal success
probability which is just equivalent to the entanglement of the partially
entangled state. That is, this ECP is an optimal one.Comment: 5 pages, 4 figure
Efficient multipartite entanglement purification with the entanglement link from a subspace
We present an efficient multipartite entanglement purification protocol
(MEPP) for N-photon systems in a Greenberger-Horne-Zeilinger state with
parity-check detectors. It contains two parts. One is the conventional MEPP
with which the parties can obtain a high-fidelity N-photon ensemble directly,
similar to the MEPP with controlled-not gates. The other is our recycling MEPP
in which the entanglement link is used to produce some -photon entangled
systems from entangled N'-photon subsystems (2 \leq N'<N) coming from the
instances which are just discarded in all existing conventional MEPPs. The
entangled N'-photon subsystems are obtained efficiently by measuring the
photons with potential bit-flip errors. With these two parts, the present MEPP
has a higher efficiency than all other conventional MEPPs.Comment: 17 pages, 9 figures, 2 tables. We correct the error in the address of
the author in the published version (Phys. Rev. A 84, 052312 (2011)
Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius.
Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of ”-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5-6, ST36-37, LI6-7 or G37-39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5-6 or ST36-37, but not LI6-7 or G37-39 acupoints, inhibits the bradycardia and vasodepression through a ”-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5-6 and ST36-37 overlying the deep somatosensory nerves and LI6-7 and G37-39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5-6 or ST36-37 reduced the depressor and bradycardia responses to PBG while EA at LI6-7 or G37-39 did not. Congruent with the hemodynamic responses, EA at P5-6 and ST36-37, but not at LI6-7 and G37-39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific Ό-receptor antagonist reversed P5-6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a Ό-opioid mechanism in the NTS
- âŠ