22 research outputs found

    Coupling Vision and Proprioception for Navigation of Legged Robots

    Full text link
    We exploit the complementary strengths of vision and proprioception to develop a point-goal navigation system for legged robots, called VP-Nav. Legged systems are capable of traversing more complex terrain than wheeled robots, but to fully utilize this capability, we need a high-level path planner in the navigation system to be aware of the walking capabilities of the low-level locomotion policy in varying environments. We achieve this by using proprioceptive feedback to ensure the safety of the planned path by sensing unexpected obstacles like glass walls, terrain properties like slipperiness or softness of the ground and robot properties like extra payload that are likely missed by vision. The navigation system uses onboard cameras to generate an occupancy map and a corresponding cost map to reach the goal. A fast marching planner then generates a target path. A velocity command generator takes this as input to generate the desired velocity for the walking policy. A safety advisor module adds sensed unexpected obstacles to the occupancy map and environment-determined speed limits to the velocity command generator. We show superior performance compared to wheeled robot baselines, and ablation studies which have disjoint high-level planning and low-level control. We also show the real-world deployment of VP-Nav on a quadruped robot with onboard sensors and computation. Videos at https://navigation-locomotion.github.ioComment: CVPR 2022 final version. Website at https://navigation-locomotion.github.i

    Adapt On-the-Go: Behavior Modulation for Single-Life Robot Deployment

    Full text link
    To succeed in the real world, robots must cope with situations that differ from those seen during training. We study the problem of adapting on-the-fly to such novel scenarios during deployment, by drawing upon a diverse repertoire of previously learned behaviors. Our approach, RObust Autonomous Modulation (ROAM), introduces a mechanism based on the perceived value of pre-trained behaviors to select and adapt pre-trained behaviors to the situation at hand. Crucially, this adaptation process all happens within a single episode at test time, without any human supervision. We provide theoretical analysis of our selection mechanism and demonstrate that ROAM enables a robot to adapt rapidly to changes in dynamics both in simulation and on a real Go1 quadruped, even successfully moving forward with roller skates on its feet. Our approach adapts over 2x as efficiently compared to existing methods when facing a variety of out-of-distribution situations during deployment by effectively choosing and adapting relevant behaviors on-the-fly.Comment: 19 pages, 6 figure

    Research on parameters of MMC fracture criterion for advanced high strength dual-phase steel sheets

    No full text
    To predict the shear fracture, tests of advanced high-strength DP steels have been carried out, and fracture models of DP steels have been established using the MMC fracture model. The MMC fracture parameters were obtained through multiple sets of experiments and stress triaxiality solved by simulation. The result was verified by stretch-bending, Nakazima tests and simulations. It shows that the MMC criterion is suitable for predicting ductile fracture of DP980, 1180. The correlation between the parameters of the MMC criterion and DP steel material properties can reduce the amount of tests data required

    Micro/nanomotor: A promising drug delivery system for cancer therapy

    No full text
    Micro/nanomotors (MNMs) are small-scale devices that can effectively convert various forms of energy into mechanical motion. Their controllable motility and good permeability have attracted the interest of researchers as promising drug carriers in cancer therapy. Compared with traditional formulations, micro/nanomotor drug delivery systems can greatly improve therapeutic efficiency and reduce the side effects of antitumor drugs. This review mainly discusses the advantages of micro/nanomotor drug delivery systems and the applications of MNMs propelled by exogenous, endogenous, and biohybrid power in cancer therapy. Finally, the main challenges of the applications of micro/nanomotor drug delivery systems, as well as future development trends and opportunities are discussed

    The Mechanism and Diagnosis of Insulation Deterioration Caused by Moisture Ingress into Oil-Impregnated Paper Bushing

    No full text
    The healthy state of insulation in oil-impregnated bushings is traditionally evaluated by tanδ and capacitance at power frequency and mostly at 10 kV in the test standard. However, there has frequently been insulation accidents induced by moisture ingress (MI) for bushings that have passed the standard. The mechanism and new diagnostic features for MI into bushings were not distinct enough and an accurate test method is urgently needed research. To address this technical gap, a bushing model with a transparent sheath was designed and an ultrasonic humidifier device was adopted to simulate the environment of MI in bushings and recorded by digital camera. The parameters of dielectric dissipation factor, capacitance, partial discharge (PD), frequency domain response, and moisture content in oil were measured at room temperature with time. The results presented that both the increment dissipation factor at low frequency of 0.001 Hz and the increment dissipation factor of 1.2 Um could be used for detecting the earlier insulation defect of oil-impregnated paper (OIP) bushings. The phase resolved partial discharge (PRPD) can serve as the diagnostic basis of the severe state (S3) of insulation deterioration caused by MI into bushings around the phases of 0–117°, 151–303°, and 325–360°. The research findings would provide a useful reference for the condition diagnosis and maintenance of OIP bushings. Especially, the increment detection of Frequency Domain Spectroscopy (FDS) at the frequency of 1 mHz and 10 kHz was recommended firstly for the operative bushings in real sites

    Multilayer dielectric elastomer with reconfigurable electrodes for artificial muscle

    No full text
    High-performance multilayer dielectric elastomer actuators (DEAs) are well-positioned to overcome the insufficient output force and energy density as artificial muscles. However, due to the fabrication process, the multilayer DEAs with nonmodifiable structures often suffer from the limitation of short lifespans and scalable preparation. Herein, reusable multilayer DEAs with the detachable and reconfigurable structure are fabricated. This is achieved by realizing scalable compliant electrodes using the continuous spatial confining forced network assembly (CSNA) method and combining the vacuum lamination (VL) approach to have good attachability and detachability with the VHB dielectric elastomer. The flexible roller-based CSNA method is used to prepare the large area compliant electrodes composed of α, ω-dihydroxy polydimethylsiloxane and electrically conductive nanoparticles. The fabricated electrodes can continuously work over 10 000 cycles at 40% strained stretching and maintain smooth surfaces to construct multilayer DEAs. Moreover, owing to the detachable configuration of the DEAs, the electrodes can also be recovered and reused for building new actuators. The lower limb assistive device is demonstrated by detachable multilayer spring roll DEAs, achieving approximately 3.1 degrees of flexion and extension movement of knee models under a voltage of 7 kV. The detachable and reconfigurable multilayer DEAs shed new light on the applications of wearable assistive devices.National Research Foundation (NRF)Published versionThis work was supported by the National Natural Science Foundationof China (Grant No.52003018). This research was partially supported bySGSR project grant from the National Research Foundation, Prime Minis-ter’s Office, Singapore under its Campus of Research Excellence and Tech-nological Enterprise (CREATE) program
    corecore