68 research outputs found

    Prediction of Gender from Longitudinal MRI data via Deep Learning on Adolescent Data Reveals Unique Patterns Associated with Brain Structure and Change over a Two-year Period

    Full text link
    Deep learning algorithms for predicting neuroimaging data have shown considerable promise in various applications. Prior work has demonstrated that deep learning models that take advantage of the data's 3D structure can outperform standard machine learning on several learning tasks. However, most prior research in this area has focused on neuroimaging data from adults. Within the Adolescent Brain and Cognitive Development (ABCD) dataset, a large longitudinal development study, we examine structural MRI data to predict gender and identify gender-related changes in brain structure. Results demonstrate that gender prediction accuracy is exceptionally high (>97%) with training epochs >200 and that this accuracy increases with age. Brain regions identified as the most discriminative in the task under study include predominantly frontal areas and the temporal lobe. When evaluating gender predictive changes specific to a two-year increase in age, a broader set of visual, cingulate, and insular regions are revealed. Our findings show a robust gender-related structural brain change pattern, even over a small age range. This suggests that it might be possible to study how the brain changes during adolescence by looking at how these changes are related to different behavioral and environmental factors

    Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI

    Get PDF
    Conventionally, brain function is inferred from the magnitude data of the complex-valued fMRI output. Since the fMRI phase image (unwrapped) provides a representation of brain internal magnetic fieldmap (by a constant scale difference), it can also be used to study brain function while providing a more direct representation of the brain's magnetic state. In this study, we collected a cohort of resting-state fMRI magnitude and phase data pairs from 600 subjects (age from 10 to 76, 346 males), decomposed the phase data by group independent component analysis (pICA), calculated the functional network connectivity (pFNC). In comparison with the magnitude-based brain function analysis (mICA and mFNC), we find that the pFNC matrix contains fewer significant functional connections (with p-value thresholding) than the mFNC matrix, which are sparsely distributed across the whole brain with near/far interconnections and positive/negative correlations in rough balance. We also find a few of brain rest sub-networks within the phase data, primarily in subcortical, cerebellar, and visual regions. Overall, our findings offer new insights into brain function connectivity in the context of a focus on the brain's internal magnetic state

    4D Dynamic Spatial Brain Networks at Rest Linked to Cognition Show Atypical Variability and Coupling in Schizophrenia

    Get PDF
    Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain networks in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan, that we refer to as dynamic spatial network connectivity (dSNC). We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxel-wise changes within and between brain networks

    Cross-Cohort Replicable Resting-State Functional Connectivity in Predicting Symptoms and Cognition of Schizophrenia

    Get PDF
    Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p \u3c .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions

    Predictive signature of static and dynamic functional connectivity for ECT clinical outcomes

    Get PDF
    Introduction: Electroconvulsive therapy (ECT) remains one of the most effective approaches for treatment-resistant depressive episodes, despite the potential cognitive impairment associated with this treatment. As a potent stimulator of neuroplasticity, ECT might normalize aberrant depression-related brain function via the brain’s reconstruction by forming new neural connections. Multiple lines of evidence have demonstrated that functional connectivity (FC) changes are reliable indicators of antidepressant efficacy and cognitive changes from static and dynamic perspectives. However, no previous studies have directly ascertained whether and how different aspects of FC provide complementary information in terms of neuroimaging-based prediction of clinical outcomes.Methods: In this study, we implemented a fully automated independent component analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92) randomized to three treatment amplitudes (600, 700, or 800 milliamperes [mA]). We extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC) features and employed a partial least square regression to build predictive models for antidepressant outcomes and cognitive changes.Results: We found that both antidepressant outcomes and memory changes can be robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10−3). More interestingly, by adding dFNC information, the model achieved higher accuracy for predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t = 9.6434, p = 1.5 × 10−21). The predictive maps of clinical outcomes show a weakly negative correlation, indicating that the ECT-induced antidepressant outcomes and cognitive changes might be associated with different functional brain neuroplasticity.Discussion: The overall results reveal that dynamic FC is not redundant but reflects mechanisms of ECT that cannot be captured by its static counterpart, especially for the prediction of antidepressant efficacy. Tracking the predictive signatures of static and dynamic FC will help maximize antidepressant outcomes and cognitive safety with individualized ECT dosing

    Psychotic Symptom, Mood, and Cognition-associated Multimodal MRI Reveal Shared Links to the Salience Network Within the Psychosis Spectrum Disorders

    Get PDF
    Schizophrenia (SZ), schizoaffective disorder (SAD), and psychotic bipolar disorder share substantial overlap in clinical phenotypes, associated brain abnormalities and risk genes, making reliable diagnosis among the three illness challenging, especially in the absence of distinguishing biomarkers. This investigation aims to identify multimodal brain networks related to psychotic symptom, mood, and cognition through reference-guided fusion to discriminate among SZ, SAD, and BP. Psychotic symptom, mood, and cognition were used as references to supervise functional and structural magnetic resonance imaging (MRI) fusion to identify multimodal brain networks for SZ, SAD, and BP individually. These features were then used to assess the ability in discriminating among SZ, SAD, and BP. We observed shared links to functional and structural covariation in prefrontal, medial temporal, anterior cingulate, and insular cortices among SZ, SAD, and BP, although they were linked with different clinical domains. The salience (SAN), default mode (DMN), and fronto-limbic (FLN) networks were the three identified multimodal MRI features within the psychosis spectrum disorders from psychotic symptom, mood, and cognition associations. In addition, using these networks, we can classify patients and controls and distinguish among SZ, SAD, and BP, including their first-degree relatives. The identified multimodal SAN may be informative regarding neural mechanisms of comorbidity for psychosis spectrum disorders, along with DMN and FLN may serve as potential biomarkers in discriminating among SZ, SAD, and BP, which may help investigators better understand the underlying mechanisms of psychotic comorbidity from three different disorders via a multimodal neuroimaging perspective

    Dynamic Functional Connectivity Predicts Treatment Response to Electroconvulsive Therapy in Major Depressive Disorder

    Get PDF
    Background: Electroconvulsive therapy (ECT) is one of the most effective treatments for major depressive disorder. Recently, there has been increasing attention to evaluate the effect of ECT on resting-state functional magnetic resonance imaging (rs-fMRI). This study aims to compare rs-fMRI of depressive disorder (DEP) patients with healthy participants, investigate whether pre-ECT dynamic functional network connectivity network (dFNC) estimated from patients rs-fMRI is associated with an eventual ECT outcome, and explore the effect of ECT on brain network states. Method: Resting-state functional magnetic resonance imaging (fMRI) data were collected from 119 patients with depression or depressive disorder (DEP) (76 females), and 61 healthy (HC) participants (34 females), with an age mean of 52.25 (N = 180) years old. The pre-ECT and post-ECT Hamilton Depression Rating Scale (HDRS) were 25.59 ± 6.14 and 11.48 ± 9.07, respectively. Twenty-four independent components from default mode (DMN) and cognitive control network (CCN) were extracted, using group-independent component analysis from pre-ECT and post-ECT rs-fMRI. Then, the sliding window approach was used to estimate the pre-and post-ECT dFNC of each subject. Next, k-means clustering was separately applied to pre-ECT dFNC and post-ECT dFNC to assess three distinct states from each participant. We calculated the amount of time each subject spends in each state, which is called “occupancy rate” or OCR. Next, we compared OCR values between HC and DEP participants. We also calculated the partial correlation between pre-ECT OCRs and HDRS change while controlling for age, gender, and site. Finally, we evaluated the effectiveness of ECT by comparing pre- and post-ECT OCR of DEP and HC participants. Results: The main findings include (1) depressive disorder (DEP) patients had significantly lower OCR values than the HC group in state 2, where connectivity between cognitive control network (CCN) and default mode network (DMN) was relatively higher than other states (corrected p = 0.015), (2) Pre-ECT OCR of state, with more negative connectivity between CCN and DMN components, is linked with the HDRS changes (R = 0.23 corrected p = 0.03). This means that those DEP patients who spent less time in this state showed more HDRS change, and (3) The post-ECT OCR analysis suggested that ECT increased the amount of time DEP patients spent in state 2 (corrected p = 0.03). Conclusion: Our finding suggests that dynamic functional network connectivity (dFNC) features, estimated from CCN and DMN, show promise as a predictive biomarker of the ECT outcome of DEP patients. Also, this study identifies a possible underlying mechanism associated with the ECT effect on DEP patients

    Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales

    Get PDF
    Background: While functional connectivity is widely studied, there has been little work studying functional connectivity at different spatial scales. Likewise, the relationship of functional connectivity between spatial scales is unknown. Methods: We proposed an independent component analysis (ICA)-based approach to capture information at multiple-model orders (component numbers), and to evaluate functional network connectivity (FNC) both within and between model orders. We evaluated the approach by studying group differences in the context of a study of resting-state functional magnetic resonance imaging (rsfMRI) data collected from schizophrenia (SZ) individuals and healthy controls (HC). The predictive ability of FNC at multiple spatial scales was assessed using support vector machine-based classification. Results: In addition to consistent predictive patterns at both multiple-model orders and single-model orders, unique predictive information was seen at multiple-model orders and in the interaction between model orders. We observed that the FNC between model orders 25 and 50 maintained the highest predictive information between HC and SZ. Results highlighted the predictive ability of the somatomotor and visual domains both within and between model orders compared with other functional domains. Also, subcortical-somatomotor, temporal-somatomotor, and temporal-subcortical FNCs had relatively high weights in predicting SZ. Conclusions: In sum, multimodel order ICA provides a more comprehensive way to study FNC, produces meaningful and interesting results, which are applicable to future studies. We shared the spatial templates from this work at different model orders to provide a reference for the community, which can be leveraged in regression-based or fully automated (spatially constrained) ICA approaches. Impact statement Multimodel order independent component analysis (ICA) provides a comprehensive way to study brain functional network connectivity within and between multiple spatial scales, highlighting findings that would have been ignored in single-model order analysis. This work expands upon and adds to the relatively new literature on resting functional magnetic resonance imaging-based classification and prediction. Results highlighted the differentiating power of specific intrinsic connectivity networks on classifying brain disorders of schizophrenia patients and healthy participants, at different spatial scales. The spatial templates from this work provide a reference for the community, which can be leveraged in regression-based or fully automated ICA approaches

    Multi-Model Order Spatially Constrained ICA Reveals Highly Replicable Group Differences and Consistent Predictive Results From Resting Data: A Large N fMRI Schizophrenia Study

    Get PDF
    Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N \u3e 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development
    corecore