31 research outputs found
Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics
Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P < 0.05). The high abundance of ANAMMOX and DAMO bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies
Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing
Numerous studies have been focusing on breeding tomato plants with enhanced lycopene accumulation, considering its positive effects of fruits on the visual and functional properties. In this study, we used a bidirectional strategy: promoting the biosynthesis of lycopene, while inhibiting the conversion from lycopene to β- and α-carotene. The accumulation of lycopene was promoted by knocking down some genes associated with the carotenoid metabolic pathway. Finally, five genes were selected to be edited in genome by CRISPR/Cas9 system using Agrobacterium tumefaciens-mediated transformation. Our findings indicated that CRISPR/Cas9 is a site-specific genome editing technology that allows highly efficient target mutagenesis in multiple genes of interest. Surprisingly, the lycopene content in tomato fruit subjected to genome editing was successfully increased to about 5.1-fold. The homozygous mutations were stably transmitted to subsequent generations. Taken together, our results suggest that CRISPR/Cas9 system can be used for significantly improving lycopene content in tomato fruit with advantages such as high efficiency, rare off-target mutations, and stable heredity
A Novel STAT3-Mediated GATA6 Pathway Contributes to tert-Butylhydroquinone- (tBHQ-) Protected TNFα-Activated Vascular Cell Adhesion Molecule 1 (VCAM-1) in Vascular Endothelium
The activation of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells has been well considered implicating in the initiation and processing of atherosclerosis. Oxidative stress is mechanistically involved in proatherosclerotic cytokine-induced VCAM-1 activation. tert-Butylhydroquinone (tBHQ), a synthetic phenolic antioxidant used for preventing lipid peroxidation of food, possesses strongly antioxidant capacity against oxidative stress-induced dysfunction in various pathological process. Here, we investigated the protective role of tBHQ on tumor necrosis factor alpha- (TNFα-) induced VCAM-1 activation in both aortic endothelium of mice and cultured human vascular endothelial cells and uncovered its potential mechanisms. Our data showed that tBHQ treatment significantly reversed TNFα-induced activation of VCAM-1 at both transcriptional and protein levels. The mechanistic study revealed that inhibiting neither nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nor autophagy blocked the beneficial role of tBHQ. Alternatively, tBHQ intervention markedly alleviated TNFα-increased GATA-binding protein 6 (GATA6) mRNA and protein expressions and its translocation into nucleus. Further investigation indicated that tBHQ-inhibited signal transducer and activator of transcription 3 (STAT3) but not mitogen-activated protein kinase (MAPK) pathway contributed to its protective role against VCAM-1 activation via regulating GATA6. Collectively, our data demonstrated that tBHQ prevented TNFα-activated VCAM-1 via a novel STAT3/GATA6-involved pathway. tBHQ could be a potential candidate for the prevention of proatherosclerotic cytokine-caused inflammatory response and further dysfunctions in vascular endothelium
Image_5_Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing.tif
<p>Numerous studies have been focusing on breeding tomato plants with enhanced lycopene accumulation, considering its positive effects of fruits on the visual and functional properties. In this study, we used a bidirectional strategy: promoting the biosynthesis of lycopene, while inhibiting the conversion from lycopene to β- and α-carotene. The accumulation of lycopene was promoted by knocking down some genes associated with the carotenoid metabolic pathway. Finally, five genes were selected to be edited in genome by CRISPR/Cas9 system using Agrobacterium tumefaciens-mediated transformation. Our findings indicated that CRISPR/Cas9 is a site-specific genome editing technology that allows highly efficient target mutagenesis in multiple genes of interest. Surprisingly, the lycopene content in tomato fruit subjected to genome editing was successfully increased to about 5.1-fold. The homozygous mutations were stably transmitted to subsequent generations. Taken together, our results suggest that CRISPR/Cas9 system can be used for significantly improving lycopene content in tomato fruit with advantages such as high efficiency, rare off-target mutations, and stable heredity.</p
Vascular endothelial growth factor a modified mRNA engineered cellular electrospun membrane complexes promotes mouse skin wound repair
Artificial skin substitutes are one of the most promising areas of wound healing research; however, graft survival largely depends on how the treatment is performed. Early angiogenesis is essential for wound healing and graft survival and vascular endothelial growth factor A (VEGFA) is an important cytokine that stimulates angiogenesis. Here, we first investigated the effects of different ratios of collagen (BC) and gelatin blended with poly (l-lactide-co-caprolactone) (PLCL) on nanofibrous membranes. The Young's modulus and cell proliferation were significantly higher in the 50% BC group than that in all other groups. Then, cellular electrospun membrane complexes (CEMC) were successfully constructed from nanoscaffolds and fibroblasts extracted from human foreskin and engineered with controlled autocrine VEGFA by transfecting VEGFA modified mRNA (modRNA). Engineered CEMC significantly promoted wound healing in vivo and contributed to stable vascular network formation in the grafted area, thereby increasing the survival rate of the engineered skin. This study provides a potential solution for wound healing while establishing the value of different RNA modification methods for various engineered skins in the future, thereby advancing engineered skin development
Image_3_Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing.TIF
<p>Numerous studies have been focusing on breeding tomato plants with enhanced lycopene accumulation, considering its positive effects of fruits on the visual and functional properties. In this study, we used a bidirectional strategy: promoting the biosynthesis of lycopene, while inhibiting the conversion from lycopene to β- and α-carotene. The accumulation of lycopene was promoted by knocking down some genes associated with the carotenoid metabolic pathway. Finally, five genes were selected to be edited in genome by CRISPR/Cas9 system using Agrobacterium tumefaciens-mediated transformation. Our findings indicated that CRISPR/Cas9 is a site-specific genome editing technology that allows highly efficient target mutagenesis in multiple genes of interest. Surprisingly, the lycopene content in tomato fruit subjected to genome editing was successfully increased to about 5.1-fold. The homozygous mutations were stably transmitted to subsequent generations. Taken together, our results suggest that CRISPR/Cas9 system can be used for significantly improving lycopene content in tomato fruit with advantages such as high efficiency, rare off-target mutations, and stable heredity.</p
Image_1_Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing.PDF
<p>Numerous studies have been focusing on breeding tomato plants with enhanced lycopene accumulation, considering its positive effects of fruits on the visual and functional properties. In this study, we used a bidirectional strategy: promoting the biosynthesis of lycopene, while inhibiting the conversion from lycopene to β- and α-carotene. The accumulation of lycopene was promoted by knocking down some genes associated with the carotenoid metabolic pathway. Finally, five genes were selected to be edited in genome by CRISPR/Cas9 system using Agrobacterium tumefaciens-mediated transformation. Our findings indicated that CRISPR/Cas9 is a site-specific genome editing technology that allows highly efficient target mutagenesis in multiple genes of interest. Surprisingly, the lycopene content in tomato fruit subjected to genome editing was successfully increased to about 5.1-fold. The homozygous mutations were stably transmitted to subsequent generations. Taken together, our results suggest that CRISPR/Cas9 system can be used for significantly improving lycopene content in tomato fruit with advantages such as high efficiency, rare off-target mutations, and stable heredity.</p
CD19 chimeric antigen receptor-T cells as bridging therapy to allogeneic hematopoietic cell transplantation improves outcome in patients with refractory/relapsed B-cell acute lymphoblastic leukemia
Chimeric antigen receptor (CAR)-T cell therapy has been confirmed improving remission rates in refractory patients or relapsed B-cell acute lymphoblastic leukemia (R/R B-ALL). However, the added benefits of undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T therapy remain a subject of debate. In this research we investigated the efficiency and long-term outcomes of CD19 CAR-T bridging with allo-HSCT in R/R B-ALL patients. A total of 42 patients were brought into the cohort studies. Our findings revealed that patients who appected CAR-T followed by HSCT had a 1-year overall survival (OS) rate of 70 % and a 1-year leukemia-free survival (LFS) rate of 95 %. Moreover, patients who underwent this combined treatment had higher OS and LFS rates compared to those who received CAR-T therapy alone. In conclusion, the results of this clinical trial provide compelling evidence for the safety and efficacy of using CAR-T therapy as a bridging strategy to allo-HSCT in patients with R/R B-ALL
Image_4_Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing.TIF
<p>Numerous studies have been focusing on breeding tomato plants with enhanced lycopene accumulation, considering its positive effects of fruits on the visual and functional properties. In this study, we used a bidirectional strategy: promoting the biosynthesis of lycopene, while inhibiting the conversion from lycopene to β- and α-carotene. The accumulation of lycopene was promoted by knocking down some genes associated with the carotenoid metabolic pathway. Finally, five genes were selected to be edited in genome by CRISPR/Cas9 system using Agrobacterium tumefaciens-mediated transformation. Our findings indicated that CRISPR/Cas9 is a site-specific genome editing technology that allows highly efficient target mutagenesis in multiple genes of interest. Surprisingly, the lycopene content in tomato fruit subjected to genome editing was successfully increased to about 5.1-fold. The homozygous mutations were stably transmitted to subsequent generations. Taken together, our results suggest that CRISPR/Cas9 system can be used for significantly improving lycopene content in tomato fruit with advantages such as high efficiency, rare off-target mutations, and stable heredity.</p