4,968 research outputs found

    Impact of Electron Collision Mixing on the delay times of an electron beam excited Atomic Xenon laser

    Get PDF
    The atomic xenon (5dÂż6p) infrared laser has been experimentally and theoretically investigated using a short-pulse (30-ns), high-power (1-10-MW/cm3) coaxial electron beam excitation source. In most cases, laser oscillation is not observed during the e-beam current pulse. Laser pulses of hundreds of nanoseconds duration are subsequently obtained, however, with oscillation beginning 60-800 ns after the current pulse terminates. Results from a computer model for the xenon laser reproduce the experimental values and show that oscillation begins when the fractional electron density decays below a critical value of ≈0.2-0.8×10 6. These results lend credence to the proposal that electron collision mixing of the laser levels limits the maximum value of specific power deposition that can be used to excite the atomic xenon laser efficiently on a quasi-CW basi

    Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers

    Get PDF
    Various approaches can be used to selectively control the amount of intermixing in III-Vquantum well and quantum dotstructures. Impurity-free vacancy disordering is one technique that is favored for its simplicity, however this mechanism is sensitive to many experimental parameters. In this study, a series of silicon oxynitride capping layers have been used in the intermixing of InGaAs/GaAs quantum well and quantum dotstructures. These thin films were deposited by sputter deposition in order to minimize the incorporation of hydrogen, which has been reported to influence impurity-free vacancy disordering. The degree of intermixing was probed by photoluminescence spectroscopy and this is discussed with respect to the properties of the SiOxNyfilms. This work was also designed to monitor any additional intermixing that might be attributed to the sputtering process. In addition, the high-temperature stress is known to affect the group-III vacancy concentration, which is central to the intermixing process. This stress was directly measured and the experimental values are compared with an elastic-deformation model.This work has been made possible with access to the ACT Node of the Australian National Fabrication Facility and through the financial support of the Australian Research Council

    GeV Scale Asymmetric Dark Matter from Mirror Universe: Direct Detection and LHC Signatures

    Full text link
    Mirror universe is a fundamental way to restore parity symmetry in weak interactions. It naturally provides the lightest mirror nucleon as a unique GeV-scale asymmetric dark matter particle candidate. We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and its possible soft breaking arises only from non-interaction terms in the gauge-singlet sector. We realize the spontaneous mirror parity violation by minimizing the vacuum Higgs potential, and derive the corresponding Higgs spectrum. We demonstrate that the common origin of CP violation in the visible and mirror neutrino seesaws can generate the right amount of matter and mirror dark matter via leptogenesis. We analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments. We further study the predicted distinctive Higgs signatures at the LHC.Comment: 16pp. Plenary talk presented by HJH at the International Symposium on Cosmology and Particle Astrophysics (CosPA2011). To appear in the conference proceedings of IJMP. Minor refinement

    Spatially resolved characterization of InGaAs/GaAs quantum dot structures by scanning spreading resistance microscopy

    Get PDF
    Cross-sectional scanning spreading resistance microscopy (SSRM) is used to investigate stacked InGaAs/GaAs quantum dot(QD)structures with different doping schemes. Spatially resolved imaging of the QDs by SSRM is demonstrated. The SSRM contrast obtained for the QD layers is found to depend on doping in the structure. In the undoped structures both QD-layers and QDs within the layers could be resolved, while in the dopedstructures the QD layers appear more or less uniformly broadened. The origin of the SSRM contrast in the QD layer in the different samples is discussed and correlated with doping schemes.T. Hakkarainen, O. Douhéret, and S. Anand would like to acknowledge the Swedish Research Council VR for fi- nancial support and the Kurt-Alice Wallenberg KAW foundation for financing the microscope. L. Fu, H. H. Tan, and C. Jagadish would like to acknowledge the Australian Research Council ARC for financial support and Australian National Fabrication Facility ANFF for access to the facilities

    The Critical Success Factors and Integrated Model for Implementing E-business in Taiwan’s SMEs

    Get PDF
    Purpose - To date, identifying barriers and critical success factors (CSFs) and integrating business model in implementing e-business for SMEs have not been systematically investigated. Few existing studies have derived their CSFs and business model from large companies\u27 perspectives and have not considered the needs of integration for smaller businesses. This paper is aimed to bridge this gap. Design/methodology/approach - Existing studies on CSFs and e-business model were reviewed and their limitations were identified. By integrating insights drawn from these studies as well as adding some new factors, the author proposed a set of 18 CSFs which is believed to be more useful for SMEs. The importance of the proposed CSFs was theoretically discussed and justified. In addition, a case study was conducted to evaluate the extent of success of this proposition. Findings - The overall results from the case study assessment were positive, thus reflecting the appropriateness of the proposed CSFs and integrated model. Practical implications - The set of CSFs and integrated model can act as a list of items and an easy to follow model for SMEs to address when adopting e-business. This helps to ensure that the essential issues and factors are covered during implementation. For academics, it provides a common language for them to discuss and study the factors crucial for the success of e-business in SMEs. Originality/value - This study is probably the first to provide an integrative perspective of CSFs and integrated model for implementing e-business in the SME sector. It gives valuable information, which hopefully will help this business sector to accomplish e-business visions

    Laser-field detuning assisted optimization of exciton valley dynamics in monolayer WSe2_2: Geometric quantum speed limit

    Full text link
    Optimizing valley dynamics is an effective instrument towards precisely manipulating qubit in the context of two-dimensional semiconductor. In this work, we construct a comprehensive model, involving both intra- and intervalley channels of excitons in monolayer WSe2_2, and simultaneously takes the light-matter interaction into account, to investigate the optimal control of valley dynamics with an initial coherent excitonic state. Based on the quantum speed limit (QSL) theory, we propose two optimal control schemes aiming to reduce the evolution time of valley dynamics reaching the target state, along with to boost the evolution speed over a period of time. Further, we emphasize that the implementation of dynamical optimization is closely related to the detuning difference -- the difference of exciton-laser field detunings between the K and K' valleys -- which is determined by the optical excitation mode and magnetically-induced valley splitting. In particular, we reveal that a small detuning difference drives the actual dynamical path to converge towards the geodesic length between the initial and final states, allowing the system to evolve with the least time. Especially, in the presence of valley coherence, the actual evolution time and the calculated QSL time almost coincide, facilitating high fidelity in information transmission based on the valley qubit. Remarkably, we demonstrate an intriguing enhancement in evolution speed of valley dynamics, by adopting a large detuning difference, which induces an emerging valley polarization even without initial polarization. Our work opens a new paradigm for optically tuning excitonic physics in valleytronic applications, and may also offer solutions to some urgent problems such as speed limit of information transmission in qubit.Comment: 12 pages, 6 figure
    • 

    corecore