16 research outputs found

    Implicit Graph Neural Diffusion Networks: Convergence, Generalization, and Over-Smoothing

    Full text link
    Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems recently. However, poorly designed implicit GNN layers may have limited adaptability to learn graph metrics, experience over-smoothing issues, or exhibit suboptimal convergence and generalization properties, potentially hindering their practical performance. To tackle these issues, we introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator. Our framework allows learning the metrics of vertex and edge spaces, as well as the graph diffusion strength from data. We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem and give conditions under which it may suffer from over-smoothing during training (OST) and inference (OSI). We further propose a new implicit GNN model to avoid OST and OSI. We establish that with an appropriately chosen hyperparameter greater than the largest eigenvalue of the parameterized graph Laplacian, DIGNN guarantees a unique equilibrium, quick convergence, and strong generalization bounds. Our models demonstrate better performance than most implicit and explicit GNN baselines on benchmark datasets for both node and graph classification tasks.Comment: 57 page

    SyNDock: N Rigid Protein Docking via Learnable Group Synchronization

    Full text link
    The regulation of various cellular processes heavily relies on the protein complexes within a living cell, necessitating a comprehensive understanding of their three-dimensional structures to elucidate the underlying mechanisms. While neural docking techniques have exhibited promising outcomes in binary protein docking, the application of advanced neural architectures to multimeric protein docking remains uncertain. This study introduces SyNDock, an automated framework that swiftly assembles precise multimeric complexes within seconds, showcasing performance that can potentially surpass or be on par with recent advanced approaches. SyNDock possesses several appealing advantages not present in previous approaches. Firstly, SyNDock formulates multimeric protein docking as a problem of learning global transformations to holistically depict the placement of chain units of a complex, enabling a learning-centric solution. Secondly, SyNDock proposes a trainable two-step SE(3) algorithm, involving initial pairwise transformation and confidence estimation, followed by global transformation synchronization. This enables effective learning for assembling the complex in a globally consistent manner. Lastly, extensive experiments conducted on our proposed benchmark dataset demonstrate that SyNDock outperforms existing docking software in crucial performance metrics, including accuracy and runtime. For instance, it achieves a 4.5% improvement in performance and a remarkable millionfold acceleration in speed

    Construction of a cross-species cell landscape at single-cell level.

    Get PDF
    Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging

    What has been Enhanced in my Knowledge-Enhanced Language Model?

    No full text
    A number of knowledge integration (KI) methods have recently been proposed to incorporate external knowledge into pretrained language models (LMs). Even though knowledge-enhanced LMs (KELMs) outperform base LMs on knowledge-intensive tasks, the inner-workings of these KI methods are not well-understood. For instance, it is unclear which knowledge is effectively integrated into KELMs and which is not; and if such integration led to catastrophic forgetting of already learned knowledge. We show that existing model interpretation methods such as linear probes and prompts have some key limitations in answering these questions. Then, we revisit KI from an information-theoretic view and propose a new theoretically sound probe model called Graph Convolution Simulator (GCS) for KI interpretation. GCS is eventually quite simple – it uses graph attention on the corresponding knowledge graph for interpretation.We conduct various experiments to verify that GCS provides reasonable interpretation results for two well-known KELMs: ERNIE and K-Adapter. Our experiments reveal that only little knowledge is successfully integrated in these models, and simply increasing the size of the KI corpus may not lead to better KELMs

    Recent Advances in Reliable Deep Graph Learning: Adversarial Attack, Inherent Noise, and Distribution Shift

    Full text link
    Deep graph learning (DGL) has achieved remarkable progress in both business and scientific areas ranging from finance and e-commerce to drug and advanced material discovery. Despite the progress, applying DGL to real-world applications faces a series of reliability threats including adversarial attacks, inherent noise, and distribution shift. This survey aims to provide a comprehensive review of recent advances for improving the reliability of DGL algorithms against the above threats. In contrast to prior related surveys which mainly focus on adversarial attacks and defense, our survey covers more reliability-related aspects of DGL, i.e., inherent noise and distribution shift. Additionally, we discuss the relationships among above aspects and highlight some important issues to be explored in future research
    corecore