40,151 research outputs found
Chiral Corrections to Hyperon Axial Form Factors
We study the complete set of flavor changing hyperon axial current matrix
elements at small momentum transfer. Using partially quenched heavy baryon
chiral perturbation theory, we derive the chiral and momentum behavior of the
axial and induced pseudoscalar form factors. The meson pole contributions to
the latter posses a striking signal for chiral physics. We argue that the study
of hyperon axial matrix elements enables a systematic lattice investigation of
the efficacy of three flavor chiral expansions in the baryon sector. This can
be achieved by considering chiral corrections to SU(3) symmetry predictions,
and their partially quenched generalizations. In particular, despite the
presence of eight unknown low-energy constants, we are able to make
next-to-leading order symmetry breaking predictions for two linear combinations
of axial charges.Comment: 23 pages, 3 figures, typos corrected and a new NLO prediction adde
Optimal nonlocal multipartite entanglement concentration based on projection measurements
We propose an optimal nonlocal entanglement concentration protocol (ECP) for
multi-photon systems in a partially entangled pure state, resorting to the
projection measurement on an additional photon. One party in quantum
communication first performs a parity-check measurement on her photon in an
N-photon system and an additional photon, and then she projects the additional
photon into an orthogonal Hilbert space for dividing the original -photon
systems into two groups. In the first group, the N parties will obtain a subset
of -photon systems in a maximally entangled state. In the second group, they
will obtain some less-entangled N-photon systems which are the resource for the
entanglement concentration in the next round. By iterating the entanglement
concentration process several times, the present ECP has the maximal success
probability which is just equivalent to the entanglement of the partially
entangled state. That is, this ECP is an optimal one.Comment: 5 pages, 4 figure
Efficient multipartite entanglement purification with the entanglement link from a subspace
We present an efficient multipartite entanglement purification protocol
(MEPP) for N-photon systems in a Greenberger-Horne-Zeilinger state with
parity-check detectors. It contains two parts. One is the conventional MEPP
with which the parties can obtain a high-fidelity N-photon ensemble directly,
similar to the MEPP with controlled-not gates. The other is our recycling MEPP
in which the entanglement link is used to produce some -photon entangled
systems from entangled N'-photon subsystems (2 \leq N'<N) coming from the
instances which are just discarded in all existing conventional MEPPs. The
entangled N'-photon subsystems are obtained efficiently by measuring the
photons with potential bit-flip errors. With these two parts, the present MEPP
has a higher efficiency than all other conventional MEPPs.Comment: 17 pages, 9 figures, 2 tables. We correct the error in the address of
the author in the published version (Phys. Rev. A 84, 052312 (2011)
Remarks on multiple reflections
One cannot help being impressed by the wonderful arrays of seismograms depicted in Mr. Ellsworth's paper and in the prepared discussions. The regularity of the time intervals of successive impulses and the alternating sequence of the change of phase are readily adapted to a mechanism of multiple reflections. If the latter is accepted, the following questions seem to merit some consideration: (a) the energy concentration, (b) the positions of the reflecting surfaces, (c) the sharpness of the source-impulse, and (d) the velocity contrast of the adjacent media
Search for Spin-Dependent Short-Range Force Using Optically Polarized He Gas
We propose a new method to detect short-range \textit{P-} and \textit{T-}
violating interactions between nucleons, based on measuring the precession
frequency shift of polarized He nuclei in the presence of an unpolarized
mass. To maximize the sensitivity, a high-pressure He cell with thin glass
windows (250 ) is used to minimize the distance between the mass and
He. The magnetic field fluctuation is suppressed by using the He gas in
a different region of the cell as a magnetometer. Systematic uncertainties from
the magnetic properties of the mass are suppressed by flipping both the
magnetic field and spin directions. Without any magnetic shielding, our result
has already reached the sensitivity of the current best limit. With improvement
in uniformity and stability of the field, we can further improve the
sensitivity by two orders of magnitude over the force range from
m
Recommended from our members
Study on thermal conductivity of gas phase in nano-porous aerogel
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Nano-porous aerogel has an ultra low thermal conductivity and is usually used as the super
insulator. To evaluate the insulation performance of the aerogel, we focus on studying the thermal
conductivity of gas phase in the aerogel. We present a modified model to take into account the effect of nonuniform
pore-size distribution on the gaseous thermal conductivity, and the present model predicts more
agreement results with available data than the existing models. The gaseous thermal conductivity of the
aerogel at high temperature gradient condition is also numerically studied. We also study the effect of the
thermal transpiration flow on the gaseous thermal conductivity, and the results shows that the thermal
transpiration flow effect leads to a reduction of the gaseous thermal conductivity
States interpolating between number and coherent states and their interaction with atomic systems
Using the eigenvalue definition of binomial states we construct new
intermediate number-coherent states which reduce to number and coherent states
in two different limits. We reveal the connection of these intermediate states
with photon-added coherent states and investigate their non-classical
properties and quasi-probability distributions in detail. It is of interest to
note that these new states, which interpolate between coherent states and
number states, neither of which exhibit squeezing, are nevertheless squeezed
states. A scheme to produce these states is proposed. We also study the
interaction of these states with atomic systems in the framework of the
two-photon Jaynes-Cummings model, and describe the response of the atomic
system as it varies between the pure Rabi oscillation and the collapse-revival
mode and investigate field observables such as photon number distribution,
entropy and the Q-function.Comment: 26 pages, 29 EPS figures, Latex, Accepted for publication in J.Phys.
Design and Fabrication of Three-Dimensional Scaffolds for Tissue Engineering of Human Heart Valves
We developed a new fabrication technique for 3-dimensional scaffolds for tissue engineering of human heart valve tissue. A human aortic homograft was scanned with an X-ray computer tomograph. The data derived from the X-ray computed tomogram were processed by a computer-aided design program to reconstruct a human heart valve 3-dimensionally. Based on this stereolithographic model, a silicone valve model resembling a human aortic valve was generated. By taking advantage of the thermoplastic properties of polyglycolic acid as scaffold material, we molded a 3-dimensional scaffold for tissue engineering of human heart valves. The valve scaffold showed a deviation of only +/- 3-4% in height, length and inner diameter compared with the homograft. The newly developed technique allows fabricating custom-made, patient-specific polymeric cardiovascular scaffolds for tissue engineering without requiring any suture materials. Copyright (c) 2008 S. Karger AG, Base
Scalar Meson Spectroscopy with Lattice Staggered Fermions
With sufficiently light up and down quarks the isovector () and
isosinglet () scalar meson propagators are dominated at large distance by
two-meson states. In the staggered fermion formulation of lattice quantum
chromodynamics, taste-symmetry breaking causes a proliferation of two-meson
states that further complicates the analysis of these channels. Many of them
are unphysical artifacts of the lattice approximation. They are expected to
disappear in the continuum limit. The staggered-fermion fourth-root procedure
has its purported counterpart in rooted staggered chiral perturbation theory
(rSXPT). Fortunately, the rooted theory provides a strict framework that
permits the analysis of scalar meson correlators in terms of only a small
number of low energy couplings. Thus the analysis of the point-to-point scalar
meson correlators in this context gives a useful consistency check of the
fourth-root procedure and its proposed chiral realization. Through numerical
simulation we have measured correlators for both the and channels
in the ``Asqtad'' improved staggered fermion formulation in a lattice ensemble
with lattice spacing fm. We analyze those correlators in the context
of rSXPT and obtain values of the low energy chiral couplings that are
reasonably consistent with previous determinations.Comment: 23 pp., 3 figs., submitted to Phys. Rev.
Comparison between the Torquato-Rintoul theory of the interface effect in composite media and elementary results
We show that the interface effect on the properties of composite media
recently proposed by Torquato and Rintoul (TR) [Phys. Rev. Lett. 75, 4067
(1995)] is in fact elementary, and follows directly from taking the limit in
the dipolar polarizability of a coated sphere: the TR ``critical values'' are
simply those that make the dipolar polarizability vanish. Furthermore, the new
bounds developed by TR either coincide with the Clausius-Mossotti (CM) relation
or provide poor estimates. Finally, we show that the new bounds of TR do not
agree particularly well with the original experimental data that they quote.Comment: 13 pages, Revtex, 8 Postscript figure
- …