199 research outputs found

    The reconfigurable Josephson circulator/directional amplifier

    Full text link
    Circulators and directional amplifiers are crucial non-reciprocal signal routing and processing components involved in microwave readout chains for a variety of applications. They are particularly important in the field of superconducting quantum information, where the devices also need to have minimal photon losses to preserve the quantum coherence of signals. Conventional commercial implementations of each device suffer from losses and are built from very different physical principles, which has led to separate strategies for the construction of their quantum-limited versions. However, as recently proposed theoretically, by establishing simultaneous pairwise conversion and/or gain processes between three modes of a Josephson-junction based superconducting microwave circuit, it is possible to endow the circuit with the functions of either a phase-preserving directional amplifier or a circulator. Here, we experimentally demonstrate these two modes of operation of the same circuit. Furthermore, in the directional amplifier mode, we show that the noise performance is comparable to standard non-directional superconducting amplifiers, while in the circulator mode, we show that the sense of circulation is fully reversible. Our device is far simpler in both modes of operation than previous proposals and implementations, requiring only three microwave pumps. It offers the advantage of flexibility, as it can dynamically switch between modes of operation as its pump conditions are changed. Moreover, by demonstrating that a single three-wave process yields non-reciprocal devices with reconfigurable functions, our work breaks the ground for the development of future, more-complex directional circuits, and has excellent prospects for on-chip integration

    Implementing optimal control pulse shaping for improved single-qubit gates

    Full text link
    We employ pulse shaping to abate single-qubit gate errors arising from the weak anharmonicity of transmon superconducting qubits. By applying shaped pulses to both quadratures of rotation, a phase error induced by the presence of higher levels is corrected. Using a derivative of the control on the quadrature channel, we are able to remove the effect of the anharmonic levels for multiple qubits coupled to a microwave resonator. Randomized benchmarking is used to quantify the average error per gate, achieving a minimum of 0.007+/-0.005 using 4 ns-wide pulse.Comment: 4 pages, 4 figure

    High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity

    Full text link
    We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that in the strongly-driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.Comment: 5 pages, 4 figure
    • …
    corecore