75 research outputs found

    Fitting Neutrino Physics with a U(1)_R Lepton Number

    Full text link
    We study neutrino physics in the context of a supersymmetric model where a continuous R-symmetry is identified with the total Lepton Number and one sneutrino can thus play the role of the down type Higgs. We show that R-breaking effects communicated to the visible sector by Anomaly Mediation can reproduce neutrino masses and mixing solely via radiative contributions, without requiring any additional degree of freedom. In particular, a relatively large reactor angle (as recently observed by the Daya Bay collaboration) can be accommodated in ample regions of the parameter space. On the contrary, if the R-breaking is communicated to the visible sector by gravitational effects at the Planck scale, additional particles are necessary to accommodate neutrino data.Comment: 19 pages, 3 figures; v2: references added, constraints updated, overall conclusions unchange

    "L = R" - U(1) R as the origin of leptonic 'RPV'

    Get PDF
    A classification of phenomenologically interesting supersymmetric extensions of the Standard-Model with a U(1) R symmetry is presented. Some of these are consistent with subsets of leptonic or baryonic "R-parity violating" (RPV) operators, thereby providing a natural motivation for them. We then focus on a particular class of models in which the U(1) R symmetry coincides with lepton number when restricted to the SM sector. In this case, the extension of lepton number to the superpartners is "non-standard", implying, in particular, the existence of the leptonic RPV operators LLE c and LQD c, and a vacuum structure where one of the left-handed sneutrinos acquires a significant vacuum-expectation-value, while not being constrained by neutrino mass bounds. The model can be naturally consistent with bounds from electroweak precision measurements and flavor-changing processes. It can also easily accommodate the recently measured Higgs mass due to the existence of a scalar triplet that couples to the Higgs with an order one coupling, with only moderate fine-tuning. The phenomenology is rather rich and distinctive, with features such as heavy-but-natural Dirac gauginos, relaxed bounds on squarks, resonant slepton/sneutrino production, lepto-quark signals, as well as an interesting connection to neutrino physics arising from R-breaking. The broad qualitative features are discussed in this paper, with a more detailed phenomenological study carried out in a companion paper [1]

    UV friendly T-parity in the SU(6)/Sp(6) little Higgs model

    Full text link
    Electroweak precision tests put stringent constraints on the parameter space of little Higgs models. Tree-level exchange of TeV scale particles in a generic little Higgs model produce higher dimensional operators that make contributions to electroweak observables that are typically too large. To avoid this problem a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous couplings. However, it was realized that in simple group models such as the littlest Higgs model, the implementation of T-parity in a UV completion could present some challenges. The situation is analogous to the one in QCD where the pion can easily be defined as being odd under a new Z2Z_2 symmetry in the chiral Lagrangian, but this Z2Z_2 is not a symmetry of the quark Lagrangian. In this paper we examine the possibility of implementing a T-parity in the low energy SU(6)/Sp(6)SU(6)/Sp(6) model that might be easier to realize in the UV. In our model, the T-parity acts on the low energy non-linear sigma model field in way which is different to what was originally proposed for the Littlest Higgs, and lead to a different low energy theory. In particular, the Higgs sector of this model is a inert two Higgs doublets model with an approximate custodial symmetry. We examine the contributions of the various sectors of the model to electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and references added. Published in JHE

    How Many Supersymmetries?

    Full text link
    Supersymmetry in the gauge sector could be realized as N=1 or N=2 Supersymmetry, but the current LHC searches assume an N=1 realization. In this paper we show that squarks could be as light as few hundreds of GeV for N=2. We also describe an experimental procedure to count the number of supersymmetries, i.e. to distinguish between N=1 and N=2 supersymmetry, based on counting bins with different jet multiplicities and number of leptons.Comment: 7 pages, 3 figure

    R-parity violation in SU(5)

    Get PDF
    We show that judiciously chosen R-parity violating terms in the minimal renormalizable supersymmetric SU(5) are able to correct all the phenomenologically wrong mass relations between down quarks and charged leptons. The model can accommodate neutrino masses as well. One of the most striking consequences is a large mixing between the electron and the Higgsino. We show that this can still be in accord with data in some regions of the parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    • 

    corecore