58 research outputs found

    Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates

    Full text link
    We report a detailed magnetic study of a new type of self-organized nanowires disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507 (2007)]. The templates, prepared on sapphire wafers in a kinetically-limited regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide wires located at the bottom of the grooves. The effect of capping layers (Mo, Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was studied. Significant discrepancies with figures known for thin flat films are evidenced and discussed in terms of step anisotropy and strain-dependent surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular isosceles cross-section have also been calculated, to estimate the contribution of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the interface element was used to tune the blocking temperature of the wires, here from 50K to 200 K

    Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages

    Get PDF
    AbstractLipoprotein lipase (LPL) acts independently of its function as triglyceride hydrolase by stimulating macrophage binding and uptake of native, oxidized and glycated LDL. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in monocyte/macrophages, where they control cholesterol homeostasis. Here we study the role of PPARs in the regulation of LPL expression and activity in human monocytes and macrophages. Incubation of human monocytes or macrophages with PPARα or PPARγ ligands increases LPL mRNA and intracellular protein levels. By contrast, PPAR activators decrease secreted LPL mass and enzyme activity in differentiated macrophages. These actions of PPAR activators are associated with a reduced uptake of glycated LDL and could influence atherosclerosis development associated with diabetes

    Z_2 Invariants of topological insulators as geometric obstructions

    Get PDF
    We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to −1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a Z2-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four Z2 invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones

    Reducing vascular events risk in patients with dyslipidaemia: an update for clinicians

    No full text
    Reducing the risk of vascular events in patients with dyslipidaemia requires cardiovascular disease risk stratification and lifestyle/pharmacological intervention on modifiable risk factors. Reduction of low-density lipoprotein cholesterol (LDL-C) with statins is highly effective in reducing cardiovascular disease in patients with and without diabetes, but leaves unaddressed a sizeable residual vascular risk (RvR), which is rarely quantified in routine clinical practice. Such RvR may relate to lack of strict target attainment for all atherogenic variables [LDL-C, non-high-density lipoprotein cholesterol (HDL-C) and/or apolipoprotein B(100)]. Another substantial lipid-related and modifiable RvR component is related to atherogenic dyslipidaemia, especially as global rates of obesity, type 2 diabetes and metabolic syndrome are increasing. Atherogenic dyslipidaemia is associated with insulin-stimulated very-low-density lipoprotein overproduction and reduced reverse cholesterol transport. The hallmark of atherogenic dyslipidaemia is the coexistence of low HDL-C and elevated triglycerides. Therapeutic lifestyle changes and combination lipid-lowering therapy with drugs targeting atherogenic dyslipidaemia (such as fibrates or innovative drugs targeting atherogenic dyslipidaemia and/or apolipoprotein B(100) metabolism) on top of background statins, have a potential to reduce RvR in high-risk groups, as shown in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, in which combination therapy with simvastatin plus fenofibrate decreased macrovascular risk in patients with diabetes and atherogenic dyslipidaemia, and retinopathy risk irrespective of baseline lipids

    Structures magnétiques de Mn2TeO6 et V2WO 6. Stabilité des modes magnétiques observés

    No full text
    Neutron diffraction experiments have enabled us to determine the magnetic arrangements of Mn2TeO6 and V2WO6, two compounds of trirutile-type. The stability of several magnetic modes encountered in this series is discussed for different groups of the 3d3+ and M6+ ions.Les structures magnétiques des composés de type trirutile Mn2TeO 6 et V2WO6 ont été établies par diffraction neutronique. La stabilité de différents modes observés dans la série est discutée en fonction de la nature de l'ion 3d3+ et M6+
    • 

    corecore