459 research outputs found
Third type of domain wall in soft magnetic nanostrips
Magnetic domain walls (DWs) in nanostructures are low-dimensional objects
that separate regions with uniform magnetisation. Since they can have different
shapes and widths, DWs are an exciting playground for fundamental research, and
became in the past years the subject of intense works, mainly focused on
controlling, manipulating, and moving their internal magnetic configuration. In
nanostrips with in-plane magnetisation, two DWs have been identified: in thin
and narrow strips, transverse walls are energetically favored, while in thicker
and wider strips vortex walls have lower energy. The associated phase diagram
is now well established and often used to predict the low-energy magnetic
configuration in a given magnetic nanostructure. However, besides the
transverse and vortex walls, we find numerically that another type of wall
exists in permalloy nanostrips. This third type of DW is characterised by a
three-dimensional, flux closure micromagnetic structure with an unusual length
and three internal degrees of freedom. Magnetic imaging on
lithographically-patterned permalloy nanostrips confirms these predictions and
shows that these DWs can be moved with an external magnetic field of about 1mT.
An extended phase diagram describing the regions of stability of all known
types of DWs in permalloy nanostrips is provided.Comment: 19 pages, 7 figure
X-ray photoelectron emission microscopy in combination with x-ray magnetic circular dichroism investigation of size effects on field-induced N\'eel-cap reversal
X-ray photoelectron emission microscopy in combination with x-ray magnetic
circular dichroism is used to investigate the influence of an applied magnetic
field on N\'eel caps (i.e., surface terminations of asymmetric Bloch walls).
Self-assembled micron-sized Fe(110) dots displaying a moderate distribution of
size and aspect ratios serve as model objects. Investigations of remanent
states after application of an applied field along the direction of N\'eel-cap
magnetization give clear evidence for the magnetization reversal of the N\'eel
caps around 120 mT, with a 20 mT dispersion. No clear correlation could be
found between the value of the reversal field and geometrical features of the
dots
Phase diagram of magnetic domain walls in spin valve nano-stripes
We investigate numerically the transverse versus vortex phase diagram of
head-to-head domain walls in Co/Cu/Py spin valve nano-stripes (Py: Permalloy),
in which the Co layer is mostly single domain while the Py layer hosts the
domain wall. The range of stability of the transverse wall is shifted towards
larger thickness compared to single Py layers, due to a magnetostatic screening
effect between the two layers. An approached analytical scaling law is derived,
which reproduces faithfully the phase diagram.Comment: 4 page
Thermogravimetry and neutron thermodiffractometry studies of the H-YBa2Cu3O7 system.
The high Tc superconducting oxide YBa2Cu3O7¿x reacts with hydrogen gas. Thermogravimetric, X-ray and neutron scattering experiments allow us to propose a two-step type of hydrogen bonding. Firstly, a few hydrogen atoms fill some oxygen vacancies and may favourably modify the electron state, giving rise to a slight increase in the critical temperature. Secondly, after a prolonged heating period, the collapse of the YBa2Cu3O7¿x type framework and of superconductivity were observed, and a new, highly hydrogenated material appeared
Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation
We have measured the in-plane angular variation of nucleation and
annihilation fields of a multi-domain magnetic single dot with a microsquid.
The dots are Fe/Mo(110) self-assembled in UHV, with sub-micron size and a
hexagonal shape. The angular variations were quantitatively reproduced by
micromagnetic simulations. Discontinuities in the variations are observed, and
shown to result from bifurcations related to the interplay of the non-uniform
magnetization state with the shape of the dot.Comment: 4 pages, 4 figures, for submission as a regular articl
Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy
Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy
(XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow
of an object lying on a surface, may be used to gather information about the
three-dimensional magnetization texture inside the object. Our purpose here is
to lay the basis of a quantitative analysis of this technique. We first discuss
the principle and implementation of a method to simulate the contrast expected
from an arbitrary micromagnetic state. Text book examples and successful
comparison with experiments are then given. Instrumental settings are finally
discussed, having an impact on the contrast and spatial resolution : photon
energy, microscope extraction voltage and plane of focus, microscope background
level, electric-field related distortion of three-dimensional objects, Fresnel
diffraction or photon scattering
Controlled switching of N\'eel caps in flux-closure magnetic dots
While magnetic hysteresis usually considers magnetic domains, the switching
of the core of magnetic vortices has recently become an active topic. We
considered Bloch domain walls, which are known to display at the surface of
thin films flux-closure features called N\'eel caps. We demonstrated the
controlled switching of these caps under a magnetic field, occurring via the
propagation of a surface vortex. For this we considered flux-closure states in
elongated micron-sized dots, so that only the central domain wall can be
addressed, while domains remain unaffected.Comment: 4 pages, 3 figure
Growth modes of Fe(110) revisited: a contribution of self-assembly to magnetic materials
We have revisited the epitaxial growth modes of Fe on W(110) and Mo(110), and
propose an overview or our contribution to the field. We show that the
Stranski-Krastanov growth mode, recognized for a long time in these systems, is
in fact characterized by a bimodal distribution of islands for growth
temperature in the range 250-700°C. We observe firstly compact islands
whose shape is determined by Wulff-Kaischev's theorem, secondly thin and flat
islands that display a preferred height, ie independant from nominal thickness
and deposition procedure (1.4nm for Mo, and 5.5nm for W on the average). We
used this effect to fabricate self-organized arrays of nanometers-thick stripes
by step decoration. Self-assembled nano-ties are also obtained for nucleation
of the flat islands on Mo at fairly high temperature, ie 800°C. Finally,
using interfacial layers and solid solutions we separate two effects on the
preferred height, first that of the interfacial energy, second that of the
continuously-varying lattice parameter of the growth surface.Comment: 49 pages. Invited topical review for J. Phys.: Condens. Matte
- …