22 research outputs found

    Thermodynamic phase diagram and phase competition in BaFe2(As1-xPx)2 studied by thermal expansion

    Full text link
    High-resolution thermal-expansion and specific-heat measurements were performed on single crystalline BaFe2(As1-xPx)2 (0 < x < 0.33, x = 1). The observation of clear anomalies allows to establish the thermodynamic phase diagram which features a small coexistence region of SDW and superconductivity with a steep rise of Tc on the underdoped side. Samples that undergo the tetragonal-orthorhombic structural transition are detwinned in situ, and the response of the sample length to the magneto-structural and superconducting transitions is studied for all three crystallographic directions. It is shown that a reduction of the magnetic order by superconductivity is reflected in all lattice parameters. On the overdoped side, superconductivity affects the lattice parameters in much the same way as the SDW on the underdoped side, suggesting an intimate relation between the two types of order. Moreover, the uniaxial pressure derivatives of Tc are calculated using the Ehrenfest relation and are found to be large and anisotropic. A correspondence between substitution and uniaxial pressure is established, i.e., uniaxial pressure along the b-axis (c-axis) corresponds to a decrease (increase) of the P content. By studying the electronic contribution to the thermal expansion we find evidence for a maximum of the electronic density of states at optimal doping

    Doping evolution of superconducting gaps and electronic densities of states in Ba(Fe1-xCox)2As2 iron pnictides

    Full text link
    An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x 0.06), which illustrates the strong competition between magnetism and superconductivity to monopolize the Fermi surface in the underdoped region and the filling of the hole bands for overdoped Ba(Fe1-xCox)2As2. All superconducting samples exhibit a residual electronic density of states of unknown origin in the zero-temperature limit, which is minimal at optimal doping but increases to the normal-state value in the strongly under- and over-doped regions. The remaining specific heat in the superconducting state is well described using a two-band model with isotropic s-wave superconducting gaps.Comment: Submitted to Europhysics Letter

    He-Ion Damage and He-Release from Spinel MgAl2O4.

    No full text
    Abstract not availableJRC.E-Institute for Transuranium Elements (Karlsruhe

    TEM Investigations and Helium Release Experiments at Fully Stabilized Zirconia.

    No full text
    Abstract not availableJRC.E-Institute for Transuranium Elements (Karlsruhe
    corecore