3,625 research outputs found
Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies
A large set of cross sections for semi-inclusive electroproduction of charged pions (π^±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W^2>4 GeV^2 (up to ≈7 GeV^2) and range in four-momentum transfer squared 2<Q^2<4 (GeV/c)^2, and cover a range in the Bjorken scaling variable 0.2<x<0.6. The fractional energy of the pions spans a range 0.3<z<1, with small transverse momenta with respect to the virtual-photon direction, Pt^(2)_(t)<0.2 (GeV/c)2. The invariant mass that goes undetected, M_x or W′, is in the nucleon resonance region, W′<2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark→pion production mechanisms. The x, z, and Pt^(2)_(t) dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π^+ and π^−) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths
Stationary strings near a higher-dimensional rotating black hole
We study stationary string configurations in a space-time of a
higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto
equations for a stationary string in the 5D Myers-Perry metric allow a
separation of variables. We present these equations in the first-order form and
study their properties. We prove that the only stationary string configuration
which crosses the infinite red-shift surface and remains regular there is a
principal Killing string. A worldsheet of such a string is generated by a
principal null geodesic and a timelike at infinity Killing vector field. We
obtain principal Killing string solutions in the Myers-Perry metrics with an
arbitrary number of dimensions. It is shown that due to the interaction of a
string with a rotating black hole there is an angular momentum transfer from
the black hole to the string. We calculate the rate of this transfer in a
spacetime with an arbitrary number of dimensions. This effect slows down the
rotation of the black hole. We discuss possible final stationary configurations
of a rotating black hole interacting with a string.Comment: 13 pages, contains additianal material at the end of Section 8, also
small misprints are correcte
Merger Transitions in Brane--Black-Hole Systems: Criticality, Scaling, and Self-Similarity
We propose a toy model for study merger transitions in a curved spaceime with
an arbitrary number of dimensions. This model includes a bulk N-dimensional
static spherically symmetric black hole and a test D-dimensional brane
interacting with the black hole. The brane is asymptotically flat and allows
O(D-1) group of symmetry. Such a brane--black-hole (BBH) system has two
different phases. The first one is formed by solutions describing a brane
crossing the horizon of the bulk black hole. In this case the internal induced
geometry of the brane describes D-dimensional black hole. The other phase
consists of solutions for branes which do not intersect the horizon and the
induced geometry does not have a horizon. We study a critical solution at the
threshold of the brane-black-hole formation, and the solutions which are close
to it. In particular, we demonstrate, that there exists a striking similarity
of the merger transition, during which the phase of the BBH-system is changed,
both with the Choptuik critical collapse and with the merger transitions in the
higher dimensional caged black-hole--black-string system.Comment: 9 pages 2 figures; additional remarks and references are added at
Section IX "Discussion
On the bound state of the antiproton-deuterium-tritium ion
The properties of the weakly-bound state in the ion
are investigated with the use of the results of highly accurate computations.
The hyperfine structure splitting of this ion is investigated. We also evaluate
the life-time of the ion against the nuclear fusion and
discuss a possibility to evaluate the corresponding annihilation rate(s)
Interaction of higher-dimensional rotating black holes with branes
We study interaction of rotating higher dimensional black holes with a brane
in space-times with large extra dimensions. We demonstrate that in a general
case a rotating black hole attached to a brane can loose bulk components of its
angular momenta. A stationary black hole can have only those components of the
angular momenta which are connected with Killing vectors generating
transformations preserving a position of the brane. In a final stationary state
the null Killing vector generating the black hole horizon is tangent to the
brane. We discuss first the interaction of a cosmic string and a domain wall
with the 4D Kerr black hole. We then prove the general result for slowly
rotating higher dimensional black holes interacting with branes. The
characteristic time when a rotating black hole with the gravitational radius
reaches this final stationary state is , where
is the higher dimensional gravitational coupling constant, is the
brane tension, and is the number of extra dimensions.Comment: Version published in Class. Quant. Gra
Thermonuclear burn-up in deuterated methane
The thermonuclear burn-up of highly compressed deuterated methane CD is
considered in the spherical geometry. The minimal required values of the
burn-up parameter are determined for various
temperatures and densities . It is shown that thermonuclear burn-up
in becomes possible in practice if its initial density exceeds
. Burn-up in CDT methane
requires significantly ( 100 times) lower compressions. The developed
approach can be used in order to compute the critical burn-up parameters in an
arbitrary deuterium containing fuel
Continuous Self-Similarity Breaking in Critical Collapse
This paper studies near-critical evolution of the spherically symmetric
scalar field configurations close to the continuously self-similar solution.
Using analytic perturbative methods, it is shown that a generic growing
perturbation departs from the critical Roberts solution in a universal way. We
argue that in the course of its evolution, initial continuous self-similarity
of the background is broken into discrete self-similarity with echoing period
, reproducing the symmetries of the critical
Choptuik solution.Comment: RevTeX 3.1, 28 pages, 5 figures; discussion rewritten to clarify
several issue
Quantization of the black hole area as quantization of the angular momentum component
In transforming from Schwarzschild to Euclidean Rindler coordinates the
Schwarzschild time transforms to a periodic angle. As is well-known, this
allows one to introduce the Hawking temperature and is an origin of black hole
thermodynamics. On the other hand, according to quantum mechanics this angle is
conjugate to the component of the angular momentum. From the commutation
relation and quantization condition for the angular momentum component it is
found that the area of the horizon of a Schwarzschild black hole is quantized
with the quantum . It is shown that this conclusion is
also valid for a generic Kerr-Newman black hole.Comment: 4 pages (revtex), no figures; a boundary condition for the
differential equation (15) added; the absent of the remnants in the approach
noted; a reference added; accepted by Physical Review D for publicatio
Energy, Hamiltonian, Noether Charge, and Black Holes
It is shown that in general the energy and the Hamiltonian of matter fields on the black hole exterior play different roles. is a generator of the time evolution along the Killing time while enters the first law of black hole thermodynamics. For non-minimally
coupled fields the difference is not zero and is a Noether
charge analogous to that introduced by Wald to define the black hole
entropy. If fields vanish at the spatial boundary, is reduced to an
integral over the horizon. The analysis is carried out and an explicit
expression for is found for general diffeomorphism invariant theories. As
an extension of the results by Wald et al, the first law of black hole
thermodynamics is derived for arbitrary weak matter fields.Comment: 20 pages, latex, no figure
Proton spin polarizabilities from polarized Compton scattering
Polarized Compton scattering off the proton is studied within the framework
of subtracted dispersion relations for photon energies up to 300 MeV. As a
guideline for forthcoming experiments, we focus the attention on the role of
the proton's spin polarizabilities and investigate the most favorable
conditions to extract them with a minimum of model dependence. We conclude that
a complete separation of the four spin polarizabilities is possible, at photon
energies between threshold and the region, provided one can
achieve polarization measurements with an accuracy of a few percent.Comment: 26 pages, 7 figures
- …