3,873 research outputs found
Scattering of Straight Cosmic Strings by Black Holes: Weak Field Approximation
The scattering of a straight, infinitely long string moving with velocity
by a black hole is considered. We analyze the weak-field case, where the impact
parameter () is large, and obtain exact solutions to the equations of
motion. As a result of scattering, the string is displaced in the direction
perpendicular to the velocity by an amount , where . The second
term dominates at low velocities . The late-time
solution is represented by a kink and anti-kink, propagating in opposite
directions at the speed of light, and leaving behind them the string in a new
``phase''. The solutions are applied to the problem of string capture, and are
compared to numerical results.Comment: 19 pages, 5 figure
Applications of hidden symmetries to black hole physics
This work is a brief review of applications of hidden symmetries to black
hole physics. Symmetry is one of the most important concepts of the science. In
physics and mathematics the symmetry allows one to simplify a problem, and
often to make it solvable. According to the Noether theorem symmetries are
responsible for conservation laws. Besides evident (explicit) spacetime
symmetries, responsible for conservation of energy, momentum, and angular
momentum of a system, there also exist what is called hidden symmetries, which
are connected with higher order in momentum integrals of motion. A remarkable
fact is that black holes in four and higher dimensions always possess a set
(`tower') of explicit and hidden symmetries which make the equations of motion
of particles and light completely integrable. The paper gives a general review
of the recently obtained results. The main focus is on understanding why at all
black holes have something (symmetry) to hide.Comment: This is an extended version of the talks at NEB-14 conference
(June,Ioannina,Greece) and JGRG20 meeting (September, Kyoto, Japan
Statistical Mechanics of Charged Black Holes in Induced Einstein-Maxwell Gravity
The statistical origin of the entropy of charged black holes in models of
induced Einstein-Maxwell gravity is investigated. The constituents inducing the
Einstein-Maxwell action are charged and interact with an external gauge
potential. This new feature, however, does not change divergences of the
statistical-mechanical entropy of the constituents near the horizon. It is
demonstrated that the mechanism of generation of the Bekenstein-Hawking entropy
in induced gravity is universal and it is basically the same for charged and
neutral black holes. The concrete computations are carried out for induced
Einstein-Maxwell gravity with a negative cosmological constant in three
space-time dimensions.Comment: 16 pages, latex, no figure
Creation of multiple de Sitter universes inside a Schwarzschild black hole
A classical model for the interior structure of a Schwarzshild black hole
which consists in creating multiple de Sitter universes with lightlike
boundaries is proposed.The interaction of the boundaries is studied and a
scenario leading to disconnected de Sitter universes is described.Comment: 4 pages,latex,2 figures;contribution to the Journees Relativistes
199
Stationary strings near a higher-dimensional rotating black hole
We study stationary string configurations in a space-time of a
higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto
equations for a stationary string in the 5D Myers-Perry metric allow a
separation of variables. We present these equations in the first-order form and
study their properties. We prove that the only stationary string configuration
which crosses the infinite red-shift surface and remains regular there is a
principal Killing string. A worldsheet of such a string is generated by a
principal null geodesic and a timelike at infinity Killing vector field. We
obtain principal Killing string solutions in the Myers-Perry metrics with an
arbitrary number of dimensions. It is shown that due to the interaction of a
string with a rotating black hole there is an angular momentum transfer from
the black hole to the string. We calculate the rate of this transfer in a
spacetime with an arbitrary number of dimensions. This effect slows down the
rotation of the black hole. We discuss possible final stationary configurations
of a rotating black hole interacting with a string.Comment: 13 pages, contains additianal material at the end of Section 8, also
small misprints are correcte
Merger Transitions in Brane--Black-Hole Systems: Criticality, Scaling, and Self-Similarity
We propose a toy model for study merger transitions in a curved spaceime with
an arbitrary number of dimensions. This model includes a bulk N-dimensional
static spherically symmetric black hole and a test D-dimensional brane
interacting with the black hole. The brane is asymptotically flat and allows
O(D-1) group of symmetry. Such a brane--black-hole (BBH) system has two
different phases. The first one is formed by solutions describing a brane
crossing the horizon of the bulk black hole. In this case the internal induced
geometry of the brane describes D-dimensional black hole. The other phase
consists of solutions for branes which do not intersect the horizon and the
induced geometry does not have a horizon. We study a critical solution at the
threshold of the brane-black-hole formation, and the solutions which are close
to it. In particular, we demonstrate, that there exists a striking similarity
of the merger transition, during which the phase of the BBH-system is changed,
both with the Choptuik critical collapse and with the merger transitions in the
higher dimensional caged black-hole--black-string system.Comment: 9 pages 2 figures; additional remarks and references are added at
Section IX "Discussion
- …