3,615 research outputs found

    Stationary strings near a higher-dimensional rotating black hole

    Full text link
    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration which crosses the infinite red-shift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a spacetime with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string.Comment: 13 pages, contains additianal material at the end of Section 8, also small misprints are correcte

    Gauge field theory for Poincar\'{e}-Weyl group

    Full text link
    On the basis of the general principles of a gauge field theory the gauge theory for the Poincar\'{e}-Weyl group is constructed. It is shown that tetrads are not true gauge fields, but represent functions from true gauge fields: Lorentzian, translational and dilatational ones. The equations of gauge fields which sources are an energy-momentum tensor, orbital and spin momemta, and also a dilatational current of an external field are obtained. A new direct interaction of the Lorentzian gauge field with the orbital momentum of an external field appears, which describes some new effects. Geometrical interpretation of the theory is developed and it is shown that as a result of localization of the Poincar\'{e}-Weyl group spacetime becomes a Weyl-Cartan space. Also the geometrical interpretation of a dilaton field as a component of the metric tensor of a tangent space in Weyl-Cartan geometry is proposed.Comment: LaTex, 27 pages, no figure

    Perfect fluid and test particle with spin and dilatonic charge in a Weyl-Cartan space

    Get PDF
    The equation of perfect dilaton-spin fluid motion in the form of generalized hydrodynamic Euler-type equation in a Weyl-Cartan space is derived. The equation of motion of a test particle with spin and dilatonic charge in the Weyl-Cartan geometry background is obtained. The peculiarities of test particle motion in a Weyl-Cartan space are discussed.Comment: 25 July 1997. - 9 p. Some corrections in the text and formulars (2.4) and (2.8) are perfomed, the results being unchange

    The variational theory of the perfect dilaton-spin fluid in a Weyl-Cartan space

    Get PDF
    The variational theory of the perfect fluid with intrinsic spin and dilatonic charge (dilaton-spin fluid) is developed. The spin tensor obeys the classical Frenkel condition. The Lagrangian density of such fluid is stated, and the equations of motion of the fluid, the Weyssenhoff-type evolution equation of the spin tensor and the conservation law of the dilatonic charge are derived. The expressions of the matter currents of the fluid (the canonical energy-momentum 3-form, the metric stress-energy 4-form and the dilaton-spin momentum 3-form) are obtained.Comment: 25 July 1997. - 10 p. The variational procedure is improved, the results being unchange

    Scattering of Straight Cosmic Strings by Black Holes: Weak Field Approximation

    Full text link
    The scattering of a straight, infinitely long string moving with velocity vv by a black hole is considered. We analyze the weak-field case, where the impact parameter (bimpb_{imp}) is large, and obtain exact solutions to the equations of motion. As a result of scattering, the string is displaced in the direction perpendicular to the velocity by an amount Δb2πGMvγ/c3π(GM)2/(4c3vbimp)\Delta b\sim -2\pi GMv\gamma/c^3 -\pi (GM)^2/ (4c^3 v b_{imp}), where γ=(1(v/c)2)1/2\gamma=(1-(v/c)^2)^{-1/2}. The second term dominates at low velocities v/c<(GM/bimp)1/2v/c<(GM/b_{imp})^{1/2} . The late-time solution is represented by a kink and anti-kink, propagating in opposite directions at the speed of light, and leaving behind them the string in a new ``phase''. The solutions are applied to the problem of string capture, and are compared to numerical results.Comment: 19 pages, 5 figure

    Soap Bubbles in Outer Space: Interaction of a Domain Wall with a Black Hole

    Get PDF
    We discuss the generalized Plateau problem in the 3+1 dimensional Schwarzschild background. This represents the physical situation, which could for instance have appeared in the early universe, where a cosmic membrane (thin domain wall) is located near a black hole. Considering stationary axially symmetric membranes, three different membrane-topologies are possible depending on the boundary conditions at infinity: 2+1 Minkowski topology, 2+1 wormhole topology and 2+1 black hole topology. Interestingly, we find that the different membrane-topologies are connected via phase transitions of the form first discussed by Choptuik in investigations of scalar field collapse. More precisely, we find a first order phase transition (finite mass gap) between wormhole topology and black hole topology; the intermediate membrane being an unstable wormhole collapsing to a black hole. Moreover, we find a second order phase transition (no mass gap) between Minkowski topology and black hole topology; the intermediate membrane being a naked singularity. For the membranes of black hole topology, we find a mass scaling relation analogous to that originally found by Choptuik. However, in our case the parameter pp is replaced by a 2-vector p\vec{p} parametrizing the solutions. We find that MassppγMass\propto|\vec{p}-\vec{p}_*|^\gamma where γ0.66\gamma\approx 0.66. We also find a periodic wiggle in the scaling relation. Our results show that black hole formation as a critical phenomenon is far more general than expected.Comment: 15 pages, Latex, 4 figures include

    Statistical Mechanics of Charged Black Holes in Induced Einstein-Maxwell Gravity

    Get PDF
    The statistical origin of the entropy of charged black holes in models of induced Einstein-Maxwell gravity is investigated. The constituents inducing the Einstein-Maxwell action are charged and interact with an external gauge potential. This new feature, however, does not change divergences of the statistical-mechanical entropy of the constituents near the horizon. It is demonstrated that the mechanism of generation of the Bekenstein-Hawking entropy in induced gravity is universal and it is basically the same for charged and neutral black holes. The concrete computations are carried out for induced Einstein-Maxwell gravity with a negative cosmological constant in three space-time dimensions.Comment: 16 pages, latex, no figure

    Quantum-corrected ultraextremal horizons and validity of WKB in massless limit

    Get PDF
    We consider quantum backreaction of the quantized scalar field with an arbitrary mass and curvature coupling on ultraextremal horizons. The problem is distinguished in that (in contrast to non-extremal or extremal black holes) the WKB approximation remains valid near r+r_{+} (which is the radius of the horizon) even in the massless limit. We examine the behavior of the stress-energy tensor of the quantized field near r+r_{+} and show that quantum-corrected objects under discussion do exist. In the limit of the large mass our results agree with previous ones known in literature.Comment: revtex4, 9 page
    corecore