434 research outputs found

    Isolation and characterization of Chinese hamster cells defective in cell-cell coupling via gap junctions

    Get PDF
    Chinese hamster Wg3-h-o cells which were descended from DON cells have been mutagenized and selected for derivatives defective in metabolic cooperation via gap junctions (i.e., mec−). The selection protocol included four consecutive cycles of cocultivating mutagenized cells, deficient in hypoxanthine phosphoribosyltransferase (HPRT) and wild-type cells in the presence of thioguanine (cf Slack, C, Morgan, R H M & Hooper, M L, Exp cell res 117 (1978) 195-205) [8]. We carried out the last two selection cycles in the presence of 1 mM dibutyryl cyclic adenosine monophosphate (db-cAMP). The isolated Chinese hamster CI-4 cells which expressed the mec− phenotype most stringently showed the following characteristics: 1. 1. In standard culture medium no cell-cell coupling was detected among CI-4 cells when assayed by injections of the fluorescent dye Lucifer yellow or by electrical measurements. Between 73 and 100% of the mec+ parental cells were coupled under these conditions. Up to 14% positive contacts were found between CI-4 cells and Chinese hamster Don cells (mec+). Confluent CI-4 cells grown in the presence of 1 mM db-cAMP showed 9% coupled cells. 2. 2. No gap junction plaques were found on electron micrographs of freeze-fractured, confluent CI-4 cells. The mec+ parental cells showed small gap junction plaques (0.013% of the total cell surface analyzed). 3. 3. CI-4 cells exhibited 16% positive contacts and the parental Wg3-h-o cells showed 92% positive contacts in autoradiographic measurements of metabolic cooperation with DON cells. On an extracellular matrix, prepared from normal embryonic fibroblasts, metabolic cooperation between CI-4 and DON cells was autoradiographically measured to be 68%. Other cells of spontaneous mec− phenotype (for example mouse L cells or human fibrosarcoma HT1080 cells) also appeared to exhibit increased metabolic cooperation when grown on an extracellular matrix and assayed by autoradiographic measurements. When tested by Lucifer yellow injections, however, only very few positive contacts were found for CI-4/DON cell pairs and no positive contacts were found among mouse L cells grown on an extracellular matrix. 4. 4. The mec− defect in the genome of CI-4 cells was cured in somatic cell hybrids with mouse embryonic fibroblasts or with mouse embryonal carcinoma cells. The results of isozyme and karyotype studies of mec−, as well as mec+ somatic cell hybrids suggest that mouse chromosome 16 may be involved in complementation of the mec− defect

    E-cadherin and Cytokeratin Subtype Profiling in Effusion Cytology

    Get PDF
    Diagnostic utility of E-cadherin (E-CD) and cytokeratin (CK) subtype profiling in effusion cytology was investigated, employing immunocytochemistry on cellblock sections available from 211 metastatic carcinomas (MC), 6 mesotheliomas and 73 reactive mesothelial hyperplasias (MH). E-CD and monoclonal carcinoembryonic anti-gen (mCEA) stained 85% (120/141) and 65% (138/211) of MC, respectively. E-CD staining of MC was frequently heterogeneous (76/120) and absent in all anaplastic carcinomas (0/2). E-CD stained none (0/57) of MH while mCEA and epithelial membrane antigen (EMA) stained 12% (9/73) and 32% (16/32) of MH, respectively. Of 6 mesotheliomas, E-CD focally stained in 2 while mCEA stained none and EMA stained all. CK20 and CK17 stained none of MH or mesotheliomas. CK20 stained 15% of MC and CK 17 stained 22% of MC. CK5/6 and high molecular weight CK stained all mesotheliomas, 56% and 88% of MH, 26% and 39% of MC, respectively. MC showed predominant CK7+/20- expression, with the exceptions of MC from mucinous type of colon/rectum and ovary showing predominant CK20 positive. E-CD may be a useful positive marker for MC in effusion cytology, although it may focally stain in some mesotheliomas. Any positive staining for CK20 of MC suggests MC from the gastrointestinal tract or ovary among others

    Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma

    Get PDF
    Loss or decreased expression of runt-related transcription factor 3 (RUNX3), a tumor suppressor gene involved in gastric and other cancers, has been frequently observed in hepatocellular carcinoma (HCC). The objective of this study was to identify the regulatory mechanism of the epithelialmesenchymal transition (EMT) by RUNX3 in HCC. Human HCC cell lines, Hep3B, Huh7, HLF and SK-Hep1, were divided into low- and high-EMT lines, based on their expression of TWIST1 and SNAI2, and were used in this in vitro study. Ectopic RUNX3 expression had an anti-EMT effect in low-EMT HCC cell lines characterized by increased E-cadherin expression and decreased N-cadherin and vimentin expression. RUNX3 expression has previously been reported to reduce jagged-1 (JAG1) expression; therefore, JAG1 ligand peptide was used to reinduce EMT in RUNX3-expressing low-EMT HCC cells. Immunohistochemical analyses were performed for RUNX3, E-cadherin, N-cadherin and TWIST1 in 33 human HCC tissues, also divided into low- and high-EMT HCC, based on TWIST1 expression. E-cadherin expression was correlated positively and N-cadherin expression was correlated negatively with RUNX3 expression in low-EMT HCC tissues. Correlations between EMT markers and RUNX3 mRNA expression were analyzed using Oncomine datasets. Similarly, mRNA expression of E-cadherin was also significantly correlated with that of RUNX3 in low-EMT HCC, while mRNA expression of JAG1 was negatively correlated with that of RUNX3. These results suggest a novel mechanism by which loss or decreased expression of RUNX3 induces EMT via induction of JAG1 expression in low-EMT HCC

    A Multicellular Model of Intestinal Crypt Buckling and Fission

    Get PDF
    Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work

    RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition

    Get PDF
    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics

    P120 Catenin Regulates the Actin Cytoskeleton via Rho Family Gtpases

    Get PDF
    Cadherins are calcium-dependent adhesion molecules responsible for the establishment of tight cell–cell contacts. p120 catenin (p120ctn) binds to the cytoplasmic domain of cadherins in the juxtamembrane region, which has been implicated in regulating cell motility. It has previously been shown that overexpression of p120ctn induces a dendritic morphology in fibroblasts (Reynolds, A.B., J. Daniel, Y. Mo, J. Wu, and Z. Zhang. 1996. Exp. Cell Res. 225:328–337.). We show here that this phenotype is suppressed by coexpression of cadherin constructs that contain the juxtamembrane region, but not by constructs lacking this domain. Overexpression of p120ctn disrupts stress fibers and focal adhesions and results in a decrease in RhoA activity. The p120ctn-induced phenotype is blocked by dominant negative Cdc42 and Rac1 and by constitutively active Rho-kinase, but is enhanced by dominant negative RhoA. p120ctn overexpression increased the activity of endogenous Cdc42 and Rac1. Exploring how p120ctn may regulate Rho family GTPases, we find that p120ctn binds the Rho family exchange factor Vav2. The behavior of p120ctn suggests that it is a vehicle for cross-talk between cell–cell junctions and the motile machinery of cells. We propose a model in which p120ctn can shuttle between a cadherin-bound state and a cytoplasmic pool in which it can interact with regulators of Rho family GTPases. Factors that perturb cell–cell junctions, such that the cytoplasmic pool of p120ctn is increased, are predicted to decrease RhoA activity but to elevate active Rac1 and Cdc42, thereby promoting cell migration

    Reversion of the Malignant Phenotype of Human Breast Cells in Three-Dimensional Culture and In Vivo by Integrin Blocking Antibodies

    Get PDF
    In a recently developed human breast cancer model, treatment of tumor cells in a 3-dimensional culture with inhibitory β1-integrin antibody or its Fab fragments led to a striking morphological and functional reversion to a normal phenotype. A stimulatory β1-integrin antibody proved to be ineffective. The newly formed reverted acini re-assembled a basement membrane and re-established E-cadherin–catenin complexes, and re-organized their cytoskeletons. At the same time they downregulated cyclin D1, upregulated p21cip,waf-1, and stopped growing. Tumor cells treated with the same antibody and injected into nude mice had significantly reduced number and size of tumors in nude mice. The tissue distribution of other integrins was also normalized, suggesting the existence of intimate interactions between the different integrin pathways as well as adherens junctions. On the other hand, nonmalignant cells when treated with either α6 or β4 function altering antibodies continued to grow, and had disorganized colony morphologies resembling the untreated tumor colonies. This shows a significant role of the α6/β4 heterodimer in directing polarity and tissue structure. The observed phenotypes were reversible when the cells were disassociated and the antibodies removed. Our results illustrate that the extracellular matrix and its receptors dictate the phenotype of mammary epithelial cells, and thus in this model system the tissue phenotype is dominant over the cellular genotype
    • …
    corecore