7 research outputs found

    High expression of oleoyl-ACP hydrolase underpins life-threatening respiratory viral diseases

    Get PDF
    Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah−/− mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease

    Forschungsverbund Elbe-Oekologie - Unstrutrevitalisierung. Teilprojekt 7: Gewaesser- und Auenentwicklung Abschlussbericht

    Full text link
    Available from TIB Hannover: F02B875 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung (BMBF), Bonn (Germany)DEGerman

    Using taxonomic consistency with semi‐automated data pre‐processing for high quality DNA barcodes

    Full text link
    1. In recent years, large‐scale DNA barcoding campaigns have generated an enormous amount of COI barcodes, which are usually stored in NCBI's GenBank and the official Barcode of Life database (BOLD). BOLD data are generally associated with more detailed and better curated meta‐data, because a great proportion is based on expert‐verified and vouchered material, accessible in public collections. In the course of the initiative German Barcode of Life data were generated for the reference library of 2,846 species of Coleoptera from 13,516 individuals. 2. Confronted with the high effort associated with the identification, verification and data validation, a bioinformatic pipeline, “TaxCI” was developed that (1) identifies taxonomic inconsistencies in a given tree topology (optionally including a reference dataset), (2) discriminates between different cases of incongruence in order to identify contamination or misidentified specimens, (3) graphically marks those cases in the tree, which finally can be checked again and, if needed, corrected or removed from the dataset. For this, “TaxCI” may use DNA‐based species delimitations from other approaches (e.g. mPTP) or may perform implemented threshold‐based clustering. 3. The data‐processing pipeline was tested on a newly generated set of barcodes, using the available BOLD records as a reference. A data revision based on the first run of the TaxCI tool resulted in the second TaxCI analysis in a taxonomic match ratio very similar to the one recorded from the reference set (92% vs. 94%). The revised dataset improved by nearly 20% through this procedure compared to the original, uncorrected one. 4. Overall, the new processing pipeline for DNA barcode data allows for the rapid and easy identification of inconsistencies in large datasets, which can be dealt with before submitting them to public data repositories like BOLD or GenBank. Ultimately, this will increase the quality of submitted data and the speed of data submission, while primarily avoiding the deterioration of the accuracy of the data repositories due to ambiguously identified or contaminated specimens

    The role of host eIF2α in viral infection

    Full text link
    corecore