16 research outputs found

    Characterization of patients with both alcoholic and nonalcoholic fatty liver disease in a large United States cohort.

    Get PDF
    BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome (MetS) and is characterized by steatosis in the absence of significant alcohol consumption. However, MetS and significant alcohol intake coexist in certain individuals which may lead to the development of BAFLD. AIM: To assess the clinical characteristics of patients with both alcoholic and NAFLD (BAFLD) in a large cohort in the United States. METHODS: Adults from the National Health and Nutrition Examination Survey between 2003-2014 were included. NAFLD was diagnosed based on elevated alanine aminotransferase (ALT) and being overweight or obese in the absence of other liver diseases. BAFLD patients met the criteria for NAFLD but also had either MetS or type 2 diabetes and consumed excessive amounts of alcohol. Univariable and multivariable analysis were performed to assess differences between NAFLD and BAFLD and to compare severity based on a validated fibrosis score (FIB4 index). RESULTS: The prevalence of NAFLD was at 25.9% (95%CI; 25.1-26.8) and that of BAFLD was 0.84% (0.67, 1.02) which corresponds to an estimated 1.24 million Americans affected by BAFLD. Compared to NAFLD, patients with BAFLD were more likely to be male, smokers, have higher ALT, aspartate aminotransferase, triglycerides, and lower platelets; CONCLUSION: A significant percentage of the American general population is afflicted by BAFLD and these patients tend to have more advanced liver fibrosis

    Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation

    Get PDF
    Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4) is expressed in neuropeptide Y and proopiomelanocortin (POMC) neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s) of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4) is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling

    Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation

    No full text
    Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4) is expressed in neuropeptide Y and proopiomelanocortin (POMC) neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s) of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4) is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.</p

    Generative network models identify biological mechanisms of altered structural brain connectivity in schizophrenia

    No full text
    Background: Alterations in the structural connectome of schizophrenia patients have been widely characterized, but the mechanisms leading to those alterations remain largely unknown. Generative network models have recently been introduced as a tool to test the biological underpinnings of the formation of altered structural brain networks. Methods: We evaluated different generative network models to investigate the formation of structural brain networks in healthy controls (n=152), schizophrenia patients (n=66) and their unaffected first-degree relatives (n=32), and we identified spatial and topological factors contributing to network formation. We further investigated the association of these factors to cognition and to polygenic risk for schizophrenia. Results: Structural brain networks can be best accounted for by a two-factor model combining spatial constraints and topological neighborhood structure. The same wiring model explained brain network formation for all groups analyzed. However, relatives and schizophrenia patients exhibited significantly lower spatial constraints and lower topological facilitation compared to healthy controls. The model parameter for spatial constraint was correlated with the polygenic risk for schizophrenia and predicted reduced cognitive performance. Conclusions: Our results identify spatial constraints and local topological structure as two interrelated mechanisms contributing to normal brain development as well as altered connectomes in schizophrenia. Spatial constraints were linked to the genetic risk for schizophrenia and general cognitive functioning, thereby providing insights into their biological basis and behavioral relevance
    corecore