103 research outputs found
The Atmospheric Coupling and Dynamics Across the Mesopause (ACaDAMe) mission
The Atmospheric Coupling and Dynamics Across the Mesopause (ACaDAMe) is a mission designed to uniquely address critical questions involving multi-scale wave dynamics at key space weather (SWx) âgateway altitudesâ of the mesosphere and lower thermosphere (MLT) at âŒ70â150âŻkm. ACaDAMe observes with a nadir-pointing resonant lidar that utilizes the fluorescence of atomic Na present in the MLT. By tuning a laser to the Na absorption wavelength (589âŻnm), ACaDAMe would perform very high resolution measurements of temperature and Na densities across the mesopause during both day and night. In this manner, Na is used as tracer for observing and characterizing MLT waves generated by tropospheric weather that represent the dominant terrestrial source of energy and momentum affecting space weather and transport of mesospheric species
Recommended from our members
Aviation turbulence: dynamics, forecasting, and response to climate change
Atmospheric turbulence is a major hazard in the aviation industry and can cause injuries to passengers and crew. Understanding the physical and dynamical generation mechanisms of turbulence aids with the development of new forecasting algorithms and, therefore, reduces the impact that it has on the aviation industry. The scope of this paper is to review the dynamics of aviation turbulence, its response to climate change, and current forecasting methods at the cruising altitude of aircraft. Aviation-affecting turbulence comes from three main sources: vertical wind shear instabilities, convection, and mountain waves. Understanding these features helps researchers to develop better turbulence diagnostics. Recent research suggests that turbulence will increase in frequency and strength with climate change, and therefore, turbulence forecasting may become more important in the future. The current methods of forecasting are unable to predict every turbulence event, and research is ongoing to find the best solution to this problem by combining turbulence predictors and using ensemble forecasts to increase skill. The skill of operational turbulence forecasts has increased steadily over recent decades, mirroring improvements in our understanding. However, more work is neededâideally in collaboration with the aviation industryâto improve observations and increase forecast skill, to help maintain and enhance aviation safety standards in the future
LargeâAmplitude Mountain Waves in the Mesosphere Accompanying Weak CrossâMountain Flow During DEEPWAVE Research Flight RF22
Mountain wave (MW) propagation and dynamics extending into the upper mesosphere accompanying weak forcing are examined using in situ and remoteâsensing measurements aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V (GV) research aircraft and the German Aerospace Center Falcon. The measurements were obtained during Falcon flights FF9 and FF10 and GV Research Flight RF22 of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) performed over Mount Cook, New Zealand, on 12 and 13 July 2014. In situ measurements revealed both trapped lee waves having zonal wavelengths of λâ ~ 12 km and less, and largerâscale, vertically propagating MWs primarily at λâ ~ 20â60 km and ~100â300 km extending from west to ~400 km east of Mount Cook. GV Rayleigh lidar measurements from 25â to 60âkm altitudes showed that the weak forcing and zonal winds that increased from ~12 m/s at 12 km to ~40 and 130 m/s at 30 and 55 km, respectively, enabled largely linear MW propagation and strong amplitude growth with altitude into the mesosphere. GV Na lidar and airglow imager measurements revealed an extensive MW response from ~70 to 87 km with large amplitudes and vertical displacements at λâ ~ 40â300 km but with both decreasing with altitude approaching a critical level near 90 km. These MWs exhibited largeâscale MW breaking and among the largest sustained momentum fluxes observed in the mesosphere. UK Met Office Unified Model simulations of the RF22 MW event captured many aspects of the observed MW field and revealed that despite the dominant largeâscale MW responses in the stratosphere, the major momentum fluxes accompanied smallerâscale waves
Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves
We advance our prior energy- and flux-budget turbulence closure model
(Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows
and extend it accounting for additional vertical flux of momentum and
additional productions of turbulent kinetic energy, turbulent potential energy
(TPE) and turbulent flux of potential temperature due to large-scale internal
gravity waves (IGW). Main effects of IGW are following: the maximal value of
the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime)
becomes strongly variable. In the vertically homogeneous stratification, it
increases with increasing wave energy and can even exceed 1. In the
heterogeneous stratification, when IGW propagate towards stronger
stratification, the maximal flux Richardson number decreases with increasing
wave energy, reaches zero and then becomes negative. In other words, the
vertical flux of potential temperature becomes counter-gradient. IGW also
reduce anisotropy of turbulence and increase the share of TPE in the turbulent
total energy. Depending on the direction (downward or upward), IGW either
strengthen or weaken the total vertical flux of momentum. Predictions from the
proposed model are consistent with available data from atmospheric and
laboratory experiments, direct numerical simulations and large-eddy
simulations.Comment: 37 pages, 5 figures, revised versio
Recommended from our members
Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions
- âŠ