2 research outputs found
Anti-inflammatory effects of hepatocyte growth factor: induction of interleukin-1 receptor antagonist
Hepatocyte growth factor (HGF) prevents liver failure in various animal models including endotoxin-induced acute liver failure. We were interested to find out whether human HGF exerts anti-inflammatory effects by modulation of cytokine synthesis. Therefore, human HepG2 cells were cultured with increasing concentrations of HGF. HGF dose-dependently upregulated the production of interleukin-1 receptor antagonist (IL-1Ra). Incubation of HepG2 cells with interleukin-1beta (IL-1beta) caused an increase in IL-1Ra levels, while interleukin-6 (IL-6) had no effect on IL-1Ra synthesis. Co-stimulation of HepG2 cells with HGF + IL-1beta resulted in a synergistic effect on IL-1Ra mRNA and protein expression. Stimulation of freshly isolated mouse hepatocytes from male C57 BL/6 mice with HGF increased IL-1Ra mRNA and protein synthesis dose-dependently. A co-stimulation with HGF and IL-1beta had a synergistic effect on IL-1Ra mRNA expression but only a partially additive effect on IL-1Ra protein synthesis. HGF-induced IL-1Ra production was significantly decreased by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Accordingly, HGF stimulation specifically increased MAPK-dependent signalling pathway (p42/44). In contrast, in preactivated PBMC mRNA expression and protein synthesis of IL-1Ra, interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) were unaffected after stimulation with HGF. In conclusion, our data suggest that HGF exerts anti-inflammatory effects by modulating the signal transduction cascade leading to increased expression of IL-1Ra, which might explain the protective and regenerative properties of this cytokine in animal models of liver failure
Anti-inflammatory effects of hepatocyte growth factor: induction of interleukin-1 receptor antagonist
Hepatocyte growth factor (HGF) prevents liver failure in various animal models including endotoxin-induced acute liver failure. We were interested to find out whether human HGF exerts anti-inflammatory effects by modulation of cytokine synthesis. Therefore, human HepG2 cells were cultured with increasing concentrations of HGF. HGF dose-dependently upregulated the production of interleukin-1 receptor antagonist (IL-1Ra). Incubation of HepG2 cells with interleukin-1beta (IL-1beta) caused an increase in IL-1Ra levels, while interleukin-6 (IL-6) had no effect on IL-1Ra synthesis. Co-stimulation of HepG2 cells with HGF + IL-1beta resulted in a synergistic effect on IL-1Ra mRNA and protein expression. Stimulation of freshly isolated mouse hepatocytes from male C57 BL/6 mice with HGF increased IL-1Ra mRNA and protein synthesis dose-dependently. A co-stimulation with HGF and IL-1beta had a synergistic effect on IL-1Ra mRNA expression but only a partially additive effect on IL-1Ra protein synthesis. HGF-induced IL-1Ra production was significantly decreased by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Accordingly, HGF stimulation specifically increased MAPK-dependent signalling pathway (p42/44). In contrast, in preactivated PBMC mRNA expression and protein synthesis of IL-1Ra, interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) were unaffected after stimulation with HGF. In conclusion, our data suggest that HGF exerts anti-inflammatory effects by modulating the signal transduction cascade leading to increased expression of IL-1Ra, which might explain the protective and regenerative properties of this cytokine in animal models of liver failure