22 research outputs found

    Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies

    Get PDF
    We present a physical model to describe iontophoresis time recordings. The model is a combination of monodimensional material diffusion and decay, probably due to transport by blood flow. It has four adjustable parameters, the diffusion coefficient, the decay constant, the height of the response, and the shot saturation constant, a parameter representing the relative importance of subsequent shots (in case of saturation). We test the model with measurements of blood perfusion in the capillary bed of the fingers of women who recently had preeclampsia and in women with a history of normal pregnancy. From the fits to the measurements, we conclude that the model provides a useful physical description of the iontophoresis process. (c) 2007 Society of Photo-Optical Instrumentation Engineers.</p

    New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction

    Get PDF
    We report the design of a novel laser line-triangulation laryngoscope for the quantitative visualization of the three-dimensional movements of human vocal folds during phonation. This is the first successful in vivo recording of the three-dimensional movements of human vocal folds in absolute values. Triangulation images of the vocal folds are recorded at the rate of 4000 fps with a resolution of 256 X 256 pixels. A special image-processing algorithm is developed to precisely follow the subpixel movements of the laser line image. Vibration profiles in both horizontal and vertical directions are calibrated and measured in absolute SI units with a resolution of +/- 50 mu m. We also present a movie showing the vocal folds dynamics in vertical cross section. (c) 2008 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3041164

    Time Development Models for Perfusion Provocations Studied with Laser-Doppler Flowmetry, Applied to Iontophoresis and PORH

    No full text
    Objective: Clinical acceptance of laser-Doppler perfusion monitoring (LDPM) of microcirculation suffers from lack of quantitatively reliable signal data, due to varying tissue constitution, temperature, hydration, etc. In this article, we show that a novel approach using physiological models for response upon provacations provides quantitatively and clinically relevant time constants. Methods: We investigated this for two provocation protocols: postocclusive reactive hyperemia (PORH) and iontophoresis shots, measured with LDPM on extremities. PORH experiments were performed on patients with peripheral arterial occlusive disease (PAOD) or diabetes mellitus (DM), and on healthy controls. Iontophoresis experiments were performed on pre-eclamptic patients and healthy controls. We developed two dynamical physical models, both based on two characteristic time constants: for PORH, an "arterial" and a "capillary" time constant and, for iontophoresis, a "diffusion" and a "decay" time constant. Results: For the different subject groups, we could extract time constants that could probably be related to physiological differences. For iontophoresis, a shot saturation constant was determined, with very different values for different groups and administered drugs. Conclusions: With these models, the dynamics of the provocations can be investigated and quantitative comparisons between experiments and subject groups become available. The models offer a quantifiable standard that is independent of the type of LDPM instrumentation. Microcirculation (2009) 16, 559-571. doi:10.1080/1073968090295610

    Depth-kymography:high-speed calibrated 3D imaging of human vocal fold vibration dynamics

    No full text
    We designed and developed a laser line-triangulation endoscope compatible with any standard high-speed camera for a complete three-dimensional profiling of human vocal fold vibration dynamics. With this novel device we are able to measure absolute values of vertical and horizontal vibration amplitudes, length and width of vocal folds as well as the opening and closing velocities from a single in vivo measurement. We have studied, for the first time, the generation and propagation of mucosal waves by locating the position of its maximum vertical position and the propagation velocity. Precise knowledge about the absolute dimensions of human vocal folds and their vibration parameters has significant importance in clinical diagnosis and treatment as well as in fundamental research in voice. The new device can be used to investigate different kinds of pathological conditions including periodic or aperiodic vibrations. Consequently, the new device has significant importance in investigating vocal fold paralysis and in phonosurgical applications

    Depth-kymography of vocal fold vibrations:part II. Simulations and direct comparisons with 3D profile measurements

    No full text
    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e. g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research

    Pulsed-laser Doppler flowmetry provides basis for deep perfusion probing

    Get PDF
    A setup for pulsed-laser Doppler flowmetry ~LDF! measurements has been built and tested. Measurements were carried out comparing continuous-wave and pulsed LDF. With pulsed LDF a higher peak power can be injected into the tissue without exceeding the safety limits. This enables a much larger spacing between the locations of illumination and detection. Thus, the penetration depth, and thus the measurement volume, can be enlarged using the pulsed-LDF method. This method will allow, e.g., monitoring of the cerebral perfusion
    corecore