203 research outputs found
Methods of enhancing botanical diversity within field margins of intensively managed grassland: a 7-year field experiment
P>1. Increased intensification in agricultural grasslands has led to well-documented declines in the associated flora. Manipulation of field margins for biodiversity enhancement in arable systems has been extensively investigated. However, there is a paucity of corresponding long-term research within intensively managed grasslands. 2. We investigated a combination of establishment and management methods to enhance botanical diversity of newly established field margins in intensively managed grasslands. Three methods of field margin establishment were investigated including fencing, natural regeneration by rotavation, or seeding with a wildflower mixture. Subsequent sward management by either grazing or mowing was tested at three margin widths. Success of establishment was addressed in terms of persistence of species richness, plant community composition and incidence of noxious weeds. 3. Seeding with a wildflower mixture was the most successful establishment method to enhance plant species richness and this effect persisted throughout the 7 years of the experiment ( = 16 center dot 4 +/- 0 center dot 43 SE plant species richness per 1 x 3 m2 quadrat). Mown ( = 6 center dot 01 +/- 0 center dot 30 SE) and rotavated ( = 9 center dot 7 +/- 0 center dot 34 SE) treatments contained significantly fewer plant species; grazed controls contained 9 center dot 83 +/- 0 center dot 24 species. 4. Grazing led to a significant, but modest increase in species richness in fenced and rotavated plots compared to the mowing treatment, but had no effect in seeded plots. Grazing also led to an increased frequency and cover of competitive grasses in the seeded treatment. 5. Although margin width was not found to significantly influence species richness, there was increased herb cover and reduced abundance of noxious weeds in the wider seeded margins. 6.Synthesis and applications. The choice of establishment method and subsequent management of grassland field margins significantly affected their conservation value. The botanical diversity of margins within intensively managed pasture can be enhanced by sowing wildflower seed mixtures. This diversity can be maintained over time through appropriate management, i.e. either the reduction of high grazing pressure by seasonal fencing, or annual mowing. Management approaches that involve minimal change are currently adopted in many agri-environment schemes (such as fencing and/or the cessation of nutrient inputs) but did not produce swards of conservation value in this study
Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus
Type 2 diabetes is associated with excessive food intake and a sedentary lifestyle. Local inflammation of white adipose tissue induces cytokine-mediated insulin resistance of adipocytes. This results in enhanced lipolysis within these cells. The fatty acids that are released into the cytosol can be removed by mitochondrial Ξ²-oxidation. The flux through this pathway is normally limited by the rate of ADP supply, which in turn is determined by the metabolic activity of the adipocyte. It is expected that the latter does not adapt to an increased rate of lipolysis. We propose that elevated fatty acid concentrations in the cytosol of adipocytes induce mitochondrial uncoupling and thereby allow mitochondria to remove much larger amounts of fatty acids. By this, release of fatty acids out of adipocytes into the circulation is prevented. When the rate of fatty acid release into the cytosol exceeds the Ξ²-oxidation capacity, cytosolic fatty acid concentrations increase and induce mitochondrial toxicity. This results in a decrease in Ξ²-oxidation capacity and the entry of fatty acids into the circulation. Unless these released fatty acids are removed by mitochondrial oxidation in active muscles, these fatty acids result in ectopic triacylglycerol deposits, induction of insulin resistance, beta cell damage and diabetes. Thiazolidinediones improve mitochondrial function within adipocytes and may in this way alleviate the burden imposed by the excessive fat accumulation associated with the metabolic syndrome. Thus, the number and activity of mitochondria within adipocytes contribute to the threshold at which fatty acids are released into the circulation, leading to insulin resistance and type 2 diabetes
Absence of an adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of adipokine expression
Aims/hypothesis: The thiazolidinedione (TZD) rosiglitazone is a peroxisome proliferator-activated receptor-ΒΏ agonist that induces adipocyte differentiation and, hence, lipid accumulation. This is in apparent contrast to the long-term glucose-lowering, insulin-sensitising effect of rosiglitazone. We tested whether the action of rosiglitazone involves specific effects on mature adipocytes, which are different from those on preadipocytes. Materials and methods: Differentiated mature 3T3-L1 adipocytes were used as an in vitro model. Transcriptomics, proteomics and assays of metabolism were applied to assess the effect of rosiglitazone in different insulin and glucose conditions. Results: Rosiglitazone does not induce an increase, but rather a decrease in the lipid content of mature adipocytes. Analysis of transcriptome data, confirmed by quantitative RT-PCR and measurements of lipolysis, indicates that an altered energy metabolism may underlie this change. The pathway analysis shows a consistent picture dominated by lipid catabolism. In addition, we confirmed at both mRNA level and protein level that rosiglitazone represses adipokine expression and production, except for genes encoding adiponectin and apolipoprotein E. Moreover, transcriptome changes indicate that a general repression of genes encoding secreted proteins occurs. Conclusions/ interpretation: Our findings suggest that the change of adiposity as seen in vivo reflects a shift in balance between the different effects of TZDs on preadipocytes and on mature adipocytes, while the changes in circulating adipokine levels primarily result from an effect on mature adipocyte
Impaired expression of mitochondrial and adipogenic genes in adipose tissue from a patient with acquired partial lipodystrophy (Barraquer-Simons syndrome): a case report
<p>Abstract</p> <p>Introduction</p> <p>Acquired partial lipodystrophy or Barraquer-Simons syndrome is a rare form of progressive lipodystrophy. The etiopathogenesis of adipose tissue atrophy in these patients is unknown.</p> <p>Case presentation</p> <p>This is a case report of a 44-year-old woman with acquired partial lipodystrophy. To obtain insight into the molecular basis of lipoatrophy in acquired partial lipodystrophy, we examined gene expression in adipose tissue from this patient newly diagnosed with acquired partial lipodystrophy. A biopsy of subcutaneous adipose tissue was obtained from the patient, and DNA and RNA were extracted in order to evaluate mitochondrial DNA abundance and mRNA expression levels.</p> <p>Conclusion</p> <p>The expression of marker genes of adipogenesis and adipocyte metabolism, including the master regulator <it>PPARΞ³</it>, was down-regulated in subcutaneous adipose tissue from this patient. Adiponectin mRNA expression was also reduced but leptin mRNA levels were unaltered. Markers of local inflammatory status were unaltered. Expression of genes related to mitochondrial function was reduced despite unaltered levels of mitochondrial DNA. It is concluded that adipogenic and mitochondrial gene expression is impaired in adipose tissue in this patient with acquired partial lipodystrophy.</p
Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues
Mitochondrial Dysfunction and Adipogenic Reduction by Prohibitin Silencing in 3T3-L1 Cells
Increase in mitochondrial biogenesis has been shown to accompany brown and white adipose cell differentiation. Prohibitins (PHBs), comprised of two evolutionarily conserved proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), are present in a high molecular-weight complex in the inner membrane of mitochondria. However, little is known about the effect of mitochondrial PHBs in adipogenesis. In the present study, we demonstrate that the levels of both PHB1 and PHB2 are significantly increased during adipogenesis of 3T3-L1 preadipocytes, especially in mitochondria. Knockdown of PHB1 or PHB2 by oligonucleotide siRNA significantly reduced the expression of adipogenic markers, the accumulation of lipids and the phosphorylation of extracellular signal-regulated kinases. In addition, fragmentation of mitochondrial reticulum, loss of mitochondrial cristae, reduction of mitochondrial content, impairment of mitochondrial complex I activity and excessive production of ROS were observed upon PHB-silencing in 3T3-L1 cells. Our results suggest that PHBs are critical mediators in promoting 3T3-L1 adipocyte differentiation and may be the potential targets for obesity therapies
Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction
Tata and colleagues report defined conditions for long-term expansion and differentiation of adult human primary alveolar stem cells. Cultured AT2s are conducive to SARS-CoV-2 infection and elicit transcriptome-wide changes that mirror COVID-19 histopathology, including upregulation of inflammatory responses, cell death, and downregulation of surfactant expression, leading to pneumocyte dysfunction. Β© 2020 Elsevier Inc.Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2) and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror features of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a model for understanding human respiratory diseases
OXPHOS Supercomplexes as a Hallmark of the Mitochondrial Phenotype of Adipogenic Differentiated Human MSCs
Mitochondria are essential organelles with multiple functions, especially in energy metabolism. Recently, an increasing number of data has highlighted the role of mitochondria for cellular differentiation processes. Metabolic differences between stem cells and mature derivatives require an adaptation of mitochondrial function during differentiation. In this study we investigated alterations of the mitochondrial phenotype of human mesenchymal stem cells undergoing adipogenic differentiation. Maturation of adipocytes is accompanied by mitochondrial biogenesis and an increase of oxidative metabolism. Adaptation of the mt phenotype during differentiation is reflected by changes in the distribution of the mitochondrial network as well as marked alterations of gene expression and organization of the oxidative phosphorylation system (OXPHOS). Distinct differences in the supramolecular organization forms of cytochrome c oxidase (COX) were detected using 2D blue native (BN)-PAGE analysis. Most remarkably we observed a significant increase in the abundance of OXPHOS supercomplexes in mitochondria, emphasizing the change of the mitochondrial phenotype during adipogenic differentiation
A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice
The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice
- β¦