256 research outputs found
Normal form analysis of bouncing cycles in isotropic rotor stator contact problems
This work considers analysis of sustained bouncing responses of rotating shafts with nonlinear lateral vibrations due to rotor stator contact. The insight that this is an internal resonance phenomena makes this an ideal system to be studied with the method of normal forms, which assumes that a system may be modelled primarily in terms of just its resonant response components. However, the presence of large non smooth nonlinearities due to impact and rub mean that the method must be extended. This is achieved here by incorporating an alternating frequency/time (AFT) step to capture nonlinear forces. Furthermore, the presence of gyroscopic terms leads to the need to handle complex modal variables, and a rotating coordinate frame must be used to obtain periodic responses. The process results in an elegant formulation that can provide reduced order models of a wide variety of rotor systems, with potentially many nonlinear degrees of freedom. The method is demonstrated by comparing against time simulation of two example rotors, demonstrating high precision on a simple model and approximate precision on a larger model
Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics
Sudden onset of violent chattering or whirling rotorstator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronisation condition previously reported for a single disc system. The synchronisation formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the dampingis sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further secondary bifurcations can also occur within each family, altering the nature of the response, and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice
Dynamic similarity design method for an aero-engine dualrotor test rig
This paper presents a dynamic similarity design method to design a scale dynamic similarity model (DSM) for a dual-rotor test rig of an aero-engine. Such a test rig is usually used to investigate the major dynamic characteristics of the full-size model (FSM) and to reduce the testing cost and time for experiments on practical aero engine structures. Firstly, the dynamic equivalent model (DEM) of a dual-rotor system is modelled based on its FSM using parametric modelling, and the first 10 frequencies and mode shapes of the DEM are updated to agree with the FSM by modifying the geometrical shapes of the DEM. Then, the scaling laws for the relative parameters (such as geometry sizes of the rotors, stiffness of the supports, inherent properties) between the DEM and its scale DSM were derived from their equations of motion, and the scaling factors of the above-mentioned parameters are determined by the theory of dimensional analyses. After that, the corresponding parameters of the scale DSM of the dual-rotor test rig can be determined by using the scaling factors. In addition, the scale DSM is further updated by considering the coupling effect between the disks and shafts. Finally, critical speed and unbalance response analysis of the FSM and the updated scale DSM are performed to validate the proposed method
Two-plane automatic balancing:a symmetry breaking analysis
International audienceWe present an analysis of a two-plane automatic balancing device for rotating machinery. The mechanism consists of a pair of races that contain balancing balls which move to eliminate imbalance due to rotor eccentricity or principal axis misalignment. A model is developed that includes the effect of support anisotropy and rotor acceleration. The symmetry of the imbalance is considered, and techniques from equivariant bifurcation theory are used to derive a necessary condition for the stability of balanced operation. The unfolding of the solution structure is explored and we investigate mechanical systems in which either the supports or the automatic ball balancer is asymmetric. Here it is shown that, provided the imbalance is small, the balanced state is robust to the considered asymmetries
Overview of Motorcycle Crash Fatalities Involving Road Safety Barriers
There were 238 motorcycle-related fatalities in Australia during 2006, the highest number recorded in over 15 years. Similar increases are being noted in New Zealand where 38 motorcyclists were killed in 2006. Previous research indicates around 8% of NSW motorcycle fatalities involve a roadside barrier. No studies have been done for all of Australia. Many myths still pervade concerning how injuries occur when a motorcycle strikes a roadside barrier. The main reason is that there have been relatively few recent real world studies of such crashes where "in depth" detailed analysis of the factors leading up to the crash and the injury mechanisms have been thoroughly investigated. Physics dictates that a rider/pillion passenger travelling at speeds at around 60 km/h or more impacting a crash barrier is at a very high risk of a fatal injury, regardless of whether the barrier is concrete, steel or wire rope. Obviously the human body is not designed for such high severity impacts, in the absence of any additional safe system components. This paper presents some preliminary findings from a major research project currently underway at UNSW’s Injury Risk Management Research Centre and funded by a consortium comprised of road authorities, insurers and a consumer group. Statistical characteristics from an investigation of motorcycle fatal crashes for the years 2001 to 2006 extracted from the National Coroners Information System (NCIS), are presented. The issues of survivability and motorcycle rider injury reduction strategies are also discussed and observations concerning typical crash scenarios are provided
Investigation of a multi-ball automatic dynamic balancing mechanism for eccentric rotors,
This paper concerns an analytical and experimental investigation into the dynamics of an automatic dynamic balancer (ADB) designed to quench vibration in eccentric rotors. This fundamentally nonlinear device incorporates several balancing masses that are free to rotate in a circumferentially mounted ball race. An earlier study into the steady state and transient response of the device with two balls is extended to the case of an arbitrary number of balls. Using bifurcation analysis allied to numerical simulation of a fully nonlinear model, the question is addressed of whether increasing the number of balls is advantageous. It is found that it is never possible to perfectly balance the device at rotation speeds comparable with or below the first natural, bending frequency of the rotor. When considering practical implementation of the device, a modification is suggested where individual balls are contained in separate arcs of the ball race, with rigid partitions separating each arc. Simulation results for a partitioned ADB are compared with those from an experimental rig. Close qualitative and quantitative match is found between the theory and the experiment, confirming that for sub-resonant rotation speeds, the ADB at best makes no difference to the imbalance, and can make things substantially worse. Further related configurations worthy of experimental and numerical investigation are proposed
Bilinear amplitude approximation for piecewise-linear oscillators
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97069/1/AIAA2012-1793.pd
Regular and chaotic vibration in a piezoelectric energy harvester
We examine regular and chaotic responses of a vibrational energy harvester composed of a vertical beam and a tip mass. The beam is excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric patch. The mechanical resonator can be described by single or double well potentials depending on the gravity force from the tip mass. By changing the tip mass we examine bifurcations from single well oscillations, to regular and chaotic vibrations between the potential wells. The appearance of chaotic responses in the energy harvesting system is illustrated by the bifurcation diagram, the corresponding Fourier spectra, the phase portraits, and is confirmed by the 0–1 test. The appearance of chaotic vibrations reduces the level of harvested energy
Bostonia: The Boston University Alumni Magazine. Volume 12
Founded in 1900, Bostonia magazine is Boston University’s main alumni publication
- …