265 research outputs found

    Generalized scaling in fully developed turbulence

    Full text link
    In this paper we report numerical and experimental results on the scaling properties of the velocity turbulent fields in several flows. The limits of a new form of scaling, named Extended Self Similarity(ESS), are discussed. We show that, when a mean shear is absent, the self scaling exponents are universal and they do not depend on the specific flow (3D homogeneous turbulence, thermal convection , MHD). In contrast, ESS is not observed when a strong shear is present. We propose a generalized version of self scaling which extends down to the smallest resolvable scales even in cases where ESS is not present. This new scaling is checked in several laboratory and numerical experiment. A possible theoretical interpretation is also proposed. A synthetic turbulent signal having most of the properties of a real one has been generated.Comment: 25 pages, plain Latex, figures are available upon request to the authors ([email protected], [email protected]

    Non-Gaussian numerical errors versus mass hierarchy

    Full text link
    We probe the numerical errors made in renormalization group calculations by varying slightly the rescaling factor of the fields and rescaling back in order to get the same (if there were no round-off errors) zero momentum 2-point function (magnetic susceptibility). The actual calculations were performed with Dyson's hierarchical model and a simplified version of it. We compare the distributions of numerical values obtained from a large sample of rescaling factors with the (Gaussian by design) distribution of a random number generator and find significant departures from the Gaussian behavior. In addition, the average value differ (robustly) from the exact answer by a quantity which is of the same order as the standard deviation. We provide a simple model in which the errors made at shorter distance have a larger weight than those made at larger distance. This model explains in part the non-Gaussian features and why the central-limit theorem does not apply.Comment: 26 pages, 7 figures, uses Revte

    Growing smooth interfaces with inhomogeneous, moving external fields: dynamical transitions, devil's staircases and self-assembled ripples

    Get PDF
    We study the steady state structure and dynamics of an interface in a pure Ising system on a square lattice placed in an inhomogeneous external field. The field has a profile with a fixed shape designed to stabilize a flat interface, and is translated with velocity v_e. For small v_e, the interface is stuck to the profile, is macroscopically smooth, and is rippled with a periodicity in general incommensurate with the lattice parameter. For arbitrary orientations of the profile, the local slope of the interface locks in to one of infinitely many rational values (devil's staircase) which most closely approximates the profile. These ``lock-in'' structures and ripples dissappear as v_e increases. For still larger v_e the profile detaches from the interface which is now characterized by standard Kardar-Parisi-Zhang (KPZ) exponents.Comment: 4 pages, 4 figures, published version, minor change

    Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation

    Get PDF
    Here we study novel effects associated with electromagnetic wave propagation in a Robertson-Walker universe and the Schwarzschild spacetime with a small amount of metric stochasticity. We find that localization of electromagnetic waves occurs in a Robertson-Walker universe with time-independent metric stochasticity, while time-dependent metric stochasticity induces exponential instability in the particle production rate. For the Schwarzschild metric, time-independent randomness can decrease the total luminosity of Hawking radiation due to multiple scattering of waves outside the black hole and gives rise to event horizon fluctuations and thus fluctuations in the Hawking temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29, 199

    Turbulence and Multiscaling in the Randomly Forced Navier Stokes Equation

    Get PDF
    We present an extensive pseudospectral study of the randomly forced Navier-Stokes equation (RFNSE) stirred by a stochastic force with zero mean and a variance k4dy\sim k^{4-d-y}, where kk is the wavevector and the dimension d=3d = 3. We present the first evidence for multiscaling of velocity structure functions in this model for y4y \geq 4. We extract the multiscaling exponent ratios ζp/ζ2\zeta_p/\zeta_2 by using extended self similarity (ESS), examine their dependence on yy, and show that, if y=4y = 4, they are in agreement with those obtained for the deterministically forced Navier-Stokes equation (3d3dNSE). We also show that well-defined vortex filaments, which appear clearly in studies of the 3d3dNSE, are absent in the RFNSE.Comment: 4 pages (revtex), 6 figures (postscript

    Field Theory And Second Renormalization Group For Multifractals In Percolation

    Full text link
    The field-theory for multifractals in percolation is reformulated in such a way that multifractal exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization group describes geometrical properties of percolation clusters, while the second-one describes electrical properties, including noise cumulants. In this context, multifractal exponents are associated with symmetry-breaking fields in replica space. This provides an explanation for their observability. It is suggested that multifractal exponents are ''dominant'' instead of ''relevant'' since there exists an arbitrary scale factor which can change their sign from positive to negative without changing the Physics of the problem.Comment: RevTex, 10 page

    Real and virtual photons in an external constant electromagnetic field of most general form

    Full text link
    The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered on most general grounds basing on the first principles like Lorentz- gauge- charge- and parity-invariance. We make model- and approximation-independent, but still rather informative, statements about the behavior that the requirement of causal propagation prescribes to massive and massless branches of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point electric charge far from it (a manifestation of magneto-electric phenomenon). We establish degeneracies of the polarization tensor that (under special kinematic conditions) occur due to space-time symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item

    Scaling properties in off equilibrium dynamical processes

    Full text link
    In the present paper, we analyze the consequences of scaling hypotheses on dynamic functions, as two times correlations C(t,t)C(t,t'). We show, under general conditions, that C(t,t)C(t,t') must obey the following scaling behavior C(t,t)=ϕ1(t)f(β)S(β)C(t,t') = \phi_1(t)^{f(\beta)}{\cal{S}}(\beta), where the scaling variable is β=β(ϕ1(t)/ϕ1(t))\beta=\beta(\phi_1(t')/\phi_1(t)) and ϕ1(t)\phi_1(t'), ϕ1(t)\phi_1(t) two undetermined functions. The presence of a non constant exponent f(β)f(\beta) signals the appearance of multiscaling properties in the dynamics.Comment: 6 pages, no figure

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
    corecore