179 research outputs found
Detector Efficiency Limits on Quantum Improvement
Although the National Institute of Standards and Technology has measured the
intrinsic quantum efficiency of Si and InGaAs APD materials to be above 98 % by
building an efficient compound detector, commercially available devices have
efficiencies ranging between 15 % and 75 %. This means bandwidth, dark current,
cost, and other factors are more important than quantum efficiency for existing
applications. This paper systematically examines the generic detection process,
lays out the considerations needed for designing detectors for non-classical
applications, and identifies the ultimate physical limits on quantum
efficiency.Comment: LaTeX, 7 pages, 3 figure
Multicolor pyrometer for materials processing in space
This report documents the work performed by Physical Sciences Inc. (PSI), under contract to NASA JPL, during a 2.5-year SBIR Phase 2 Program. The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, and controlling the temperature distribution across the surface of a moving object suspended in space. These goals were achieved and the instrument was delivered to JPL in November 1989. The pyrometer utilizes an optical system which operates at short wavelengths compared to the peak of the black-body spectrum for the temperature range of interest, thus minimizing errors associated with a lack of knowledge about the heated sample's emissivity. To cover temperatures from 900 to 2500 K, six wavelengths are available. The preferred wavelength for measurement of a particular temperature decreases as the temperature increases. Images at all six wavelengths are projected onto a single CCD camera concurrently. The camera and optical system have been calibrated to relate the measured intensity at each pixel to the temperature of the heated object. The output of the camera is digitized by a frame grabber installed in a personal computer and analyzed automatically to yield temperature information. The data can be used in a feedback loop to alter the status of computer-activated switches and thereby control a heating system
Effect of Carrier Gas Pressure on Condensation in a Supersonic Nozzle
Supersonic nozzle experiments were performed with a fixed water or ethanol vapor pressure and varying amounts of nitrogen to test the hypothesis that carrier gas pressure affects the onset of condensation. Such an effect might occur if nonisothermal nucleation were important under conditions of excess carrier gas in the atmospheric pressure range, as has been suggested by Ford and Clement [J. Phys. A 22, 4007 (1989)]. Although a small increase was observed in the condensation onset temperature as the stagnation pressure was reduced from 3 to 0.5 atm, these changes cannot be attributed to any nonisothermal effects. The pulsed nozzle experiments also exhibited two interesting anomalies: (1) the density profiles for the water and ethanol mixtures were shifted in opposite directions from the dry N2 profile; (2) a long transient period was required before the nozzle showed good pulse-to-pulse repeatability for condensible vapor mixtures. To theoretically simulate the observed onset behavior, calculations of nucleation and droplet growth in the nozzle were performed that took into account two principal effects of varying the carrier gas pressure: (1) the change in nozzle shape due to boundary layer effects and (2) the variation in the heat capacity of the flowing gas. Energy transfer limitations were neglected in calculating the nucleation rates. The trend of the calculated results matched that of the experimental results very well. Thus, heat capacity and boundary layer effects are sufficient to explain the experimental onset behavior without invoking energy transfer limited nucleation. The conclusions about the rate of nucleation are consistent with those obtained recently using an expansion cloud chamber, but are at odds with results from thermal diffusion cloud chamber measurements
Intermittency in the large N-limit of a spherical shell model for turbulence
A spherical shell model for turbulence, obtained by coupling replicas of
the Gledzer, Okhitani and Yamada shell model, is considered. Conservation of
energy and of an helicity-like invariant is imposed in the inviscid limit. In
the limit this model is analytically soluble and is remarkably
similar to the random coupling model version of shell dynamics. We have studied
numerically the convergence of the scaling exponents toward the value predicted
by Kolmogorov theory (K41). We have found that the rate of convergence to the
K41 solution is linear in 1/N. The restoring of Kolmogorov law has been related
to the behaviour of the probability distribution functions of the instantaneous
scaling exponent.Comment: 10 pages, Latex, 3 Postscript figures, to be published on Europhys.
Let
Photonic superdiffusive motion in resonance line radiation trapping - partial frequency redistribution effects
The relation between the jump length probability distribution function and
the spectral line profile in resonance atomic radiation trapping is considered
for Partial Frequency Redistribution (PFR) between absorbed and reemitted
radiation. The single line Opacity Distribution Function [M.N. Berberan-Santos
et.al. J.Chem.Phys. 125, 174308 (2006)] is generalized for PFR and used to
discuss several possible redistribution mechanisms (pure Doppler broadening,
combined natural and Doppler broadening and combined Doppler, natural and
collisional broadening). It is shown that there are two coexisting scales with
a different behavior: the small scale is controlled by the intricate PFR
details while the large scale is essentially given by the atom rest frame
redistribution asymptotic. The pure Doppler and combined natural, Doppler and
collisional broadening are characterized by both small and large scale
superdiffusive Levy flight behaviors while the combined natural and Doppler
case has an anomalous small scale behavior but a diffusive large scale
asymptotic. The common practice of assuming complete redistribution in core
radiation and frequency coherence in the wings of the spectral distribution is
incompatible with the breakdown of superdiffusion in combined natural and
Doppler broadening conditions
Points, Walls and Loops in Resonant Oscillatory Media
In an experiment of oscillatory media, domains and walls are formed under the
parametric resonance with a frequency double the natural one. In this bi-stable
system, %phase jumps by crossing walls. a nonequilibrium transition from
Ising wall to Bloch wall consistent with prediction is confirmed
experimentally. The Bloch wall moves in the direction determined by its
chirality with a constant speed. As a new type of moving structure in
two-dimension, a traveling loop consisting of two walls and Neel points is
observed.Comment: 9 pages (revtex format) and 6 figures (PostScript
Non-Gaussian numerical errors versus mass hierarchy
We probe the numerical errors made in renormalization group calculations by
varying slightly the rescaling factor of the fields and rescaling back in order
to get the same (if there were no round-off errors) zero momentum 2-point
function (magnetic susceptibility). The actual calculations were performed with
Dyson's hierarchical model and a simplified version of it. We compare the
distributions of numerical values obtained from a large sample of rescaling
factors with the (Gaussian by design) distribution of a random number generator
and find significant departures from the Gaussian behavior. In addition, the
average value differ (robustly) from the exact answer by a quantity which is of
the same order as the standard deviation. We provide a simple model in which
the errors made at shorter distance have a larger weight than those made at
larger distance. This model explains in part the non-Gaussian features and why
the central-limit theorem does not apply.Comment: 26 pages, 7 figures, uses Revte
Field Theory And Second Renormalization Group For Multifractals In Percolation
The field-theory for multifractals in percolation is reformulated in such a
way that multifractal exponents clearly appear as eigenvalues of a second
renormalization group. The first renormalization group describes geometrical
properties of percolation clusters, while the second-one describes electrical
properties, including noise cumulants. In this context, multifractal exponents
are associated with symmetry-breaking fields in replica space. This provides an
explanation for their observability. It is suggested that multifractal
exponents are ''dominant'' instead of ''relevant'' since there exists an
arbitrary scale factor which can change their sign from positive to negative
without changing the Physics of the problem.Comment: RevTex, 10 page
Entropic Tightening of Vibrated Chains
We investigate experimentally the distribution of configurations of a ring
with an elementary topological constraint, a ``figure-8'' twist. Using vibrated
granular chains, which permit controlled preparation and direct observation of
such a constraint, we show that configurations where one of the loops is tight
and the second is large are strongly preferred. This agrees with recent
predictions for equilibrium properties of topologically-constrained polymers.
However, the dynamics of the tightening process weakly violate detailed
balance, a signature of the nonequilibrium nature of this system.Comment: 4 pages, 4 figure
Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation
Here we study novel effects associated with electromagnetic wave propagation
in a Robertson-Walker universe and the Schwarzschild spacetime with a small
amount of metric stochasticity. We find that localization of electromagnetic
waves occurs in a Robertson-Walker universe with time-independent metric
stochasticity, while time-dependent metric stochasticity induces exponential
instability in the particle production rate. For the Schwarzschild metric,
time-independent randomness can decrease the total luminosity of Hawking
radiation due to multiple scattering of waves outside the black hole and gives
rise to event horizon fluctuations and thus fluctuations in the Hawking
temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29,
199
- …