88 research outputs found

    Quantum Monte Carlo Loop Algorithm for the t-J Model

    Full text link
    We propose a generalization of the Quantum Monte Carlo loop algorithm to the t-J model by a mapping to three coupled six-vertex models. The autocorrelation times are reduced by orders of magnitude compared to the conventional local algorithms. The method is completely ergodic and can be formulated directly in continuous time. We introduce improved estimators for simulations with a local sign problem. Some first results of finite temperature simulations are presented for a t-J chain, a frustrated Heisenberg chain, and t-J ladder models.Comment: 22 pages, including 12 figures. RevTex v3.0, uses psf.te

    Monte Carlo Study of the Separation of Energy Scales in Quantum Spin 1/2 Chains with Bond Disorder

    Full text link
    One-dimensional Heisenberg spin 1/2 chains with random ferro- and antiferromagnetic bonds are realized in systems such as Sr3CuPt1xIrxO6Sr_3 CuPt_{1-x} Ir_x O_6. We have investigated numerically the thermodynamic properties of a generic random bond model and of a realistic model of Sr3CuPt1xIrxO6Sr_3 CuPt_{1-x} Ir_x O_6 by the quantum Monte Carlo loop algorithm. For the first time we demonstrate the separation into three different temperature regimes for the original Hamiltonian based on an exact treatment, especially we show that the intermediate temperature regime is well-defined and observable in both the specific heat and the magnetic susceptibility. The crossover between the regimes is indicated by peaks in the specific heat. The uniform magnetic susceptibility shows Curie-like behavior in the high-, intermediate- and low-temperature regime, with different values of the Curie constant in each regime. We show that these regimes are overlapping in the realistic model and give numerical data for the analysis of experimental tests.Comment: 7 pages, 5 eps-figures included, typeset using JPSJ.sty, accepted for publication in J. Phys. Soc. Jpn. 68, Vol. 3. (1999

    Low-Temperature Scaling Regime of Random Ferromagnetic-Antiferromagnetic Spin Chains

    Full text link
    Using the Continuous Time Quantum Monte Carlo Loop algorithm, we calculate the temperature dependence of the uniform susceptibility, and the specific heat of a spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down to very low temperatures. Our data show a consistent scaling behavior in both quantities and support strongly the conjecture drawn from the approximative real-space renormalization group treatment. A statistical analysis scheme is developed which will be useful for the search scaling behavior in numerical and experimental data of random spin chains.Comment: 4 pages and 3 figure

    Numerical renormalization-group study of spin correlations in one-dimensional random spin chains

    Full text link
    We calculate the ground-state two-spin correlation functions of spin-1/2 quantum Heisenberg chains with random exchange couplings using the real-space renormalization group scheme. We extend the conventional scheme to take account of the contribution of local higher multiplet excitations in each decimation step. This extended scheme can provide highly accurate numerical data for large systems. The random average of staggered spin correlations of the chains with random antiferromagnetic (AF) couplings shows algebraic decay like 1/r21/r^2, which verifies the Fisher's analytic results. For chains with random ferromagnetic (FM) and AF couplings, the random average of generalized staggered correlations is found to decay more slowly than a power-law, in the form close to 1/ln(r)1/\ln(r). The difference between the distribution functions of the spin correlations of the random AF chains and of the random FM-AF chains is also discussed.Comment: 14 pages including 8 figures, REVTeX, submitted to Physical Review

    Thermodynamics of Random Ferromagnetic Antiferromagnetic Spin-1/2 Chains

    Full text link
    Using the quantum Monte Carlo Loop algorithm, we calculate the temperature dependence of the uniform susceptibility, the specific heat, the correlation length, the generalized staggered susceptibility and magnetization of a spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down to very low temperatures. Our data show a consistent scaling behavior in all the quantities and support strongly the conjecture drawn from the approximate real-space renormalization group treatment.A statistical analysis scheme is developed which will be useful for the search of scaling behavior in numerical and experimental data of random spin chains.Comment: 13 pages, 13 figures, RevTe

    Inhomogeneous magnetism in single crystalline Sr3_3CuIrO6+δ_{6+\delta}: Implications to phase-separation concepts

    Full text link
    The single crystalline form of an insulator, Sr3_3CuIrO6+δ_{6+\delta}, is shown to exhibit unexpectedly more than one magnetic transition (at 5 and 19 K) with spin-glass-like magnetic susceptibility behaviour. On the basis of this finding, viz., inhomogeneous magnetism in a chemically homogeneous material, we propose that the idea of "phase- separation" described for manganites [1] is more widespread in different ways. The observed experimental features enable us to make a comparison with the predictions of a recent toy model [2] on {\it magnetic} phase separation in an insulating environment.Comment: 4 pages, 4 figure

    Phase diagram and hidden order for generalized spin ladders

    Full text link
    We investigate the phase diagram of antiferromagnetic spin ladders with additional exchange interactions on diagonal bonds by variational and numerical methods. These generalized spin ladders interpolate smoothly between the S=1/2S=1/2 chain with competing nn and nnn interactions, the S=1/2S=1/2 chain with alternating exchange and the antiferromagnetic S=1S=1 chain. The Majumdar-Ghosh ground states are formulated as matrix product states and are shown to exhibit the same type of hidden order as the af S=1S=1 chain. Generalized matrix product states are used for a variational calculation of the ground state energy and the spin and string correlation functions. Numerical (Lanczos) calculations of the energies of the ground state and of the low-lying excited states are performed, and compare reasonably with the variational approach. Our results support the hypothesis that the dimer and Majumdar-Ghosh points are in the same phase as the af S=1S=1 chain.Comment: 23 pages, REVTEX, 7 figure

    Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets

    Full text link
    We present a general theory for the intermediate temperature (T) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, cond-mat/9711014), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range becomes very wide for moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms of the energy gap above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd). Analytic and numeric results for dynamic and transport properties are obtained, including some exact results for the spin-wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A general discussion on the nature of T>0 transport in integrable systems is also presented: an exact solution of a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching the thermodynamic limit.Comment: 38 pages, including 12 figure

    Crossover Phenomena in the One-Dimensional SU(4) Spin-Orbit Model under Magnetic Fields

    Full text link
    We study the one-dimensional SU(4) exchange model under magnetic fields, which is the simplest effective Hamiltonian in order to investigate the quantum fluctuations concerned with the orbital degrees of freedom in coupled spin-orbit systems. The Bethe ansatz approaches and numerical calculations using the density matrix renormalization group method are employed. The main concern of the paper is how the system changes from the SU(4) to the SU(2) symmetric limit as the magnetic field is increased. For this model the conformal field theory predicts an usual behavior: there is a jump of the critical exponents just before the SU(2) limit. For a finite-size system, however, the orbital-orbital correlation functions approach continuously to the SU(2) limit after interesting crossover phenomena. The crossover takes place in the magnetization range of 1/3 \sim 1/2 for the system with 72 sites studied in this paper.Comment: 8 pages, 6 Postscript figures, REVTeX, submitted to Phys. Rev.

    Spin Waves in Random Spin Chains

    Full text link
    We study quantum spin-1/2 Heisenberg ferromagnetic chains with dilute, random antiferromagnetic impurity bonds with modified spin-wave theory. By describing thermal excitations in the language of spin waves, we successfully observe a low-temperature Curie susceptibility due to formation of large spin clusters first predicted by the real-space renormalization-group approach, as well as a crossover to a pure ferromagnetic spin chain behavior at intermediate and high temperatures. We compare our results of the modified spin-wave theory to quantum Monte Carlo simulations.Comment: 3 pages, 3 eps figures, submitted to the 47th Conference on Magnetism and Magnetic Material
    corecore