17,351 research outputs found
Anomalous scaling in two and three dimensions for a passive vector field advected by a turbulent flow
A model of the passive vector field advected by the uncorrelated in time
Gaussian velocity with power-like covariance is studied by means of the
renormalization group and the operator product expansion. The structure
functions of the admixture demonstrate essential power-like dependence on the
external scale in the inertial range (the case of an anomalous scaling). The
method of finding of independent tensor invariants in the cases of two and
three dimensions is proposed to eliminate linear dependencies between the
operators entering into the operator product expansions of the structure
functions. The constructed operator bases, which include the powers of the
dissipation operator and the enstrophy operator, provide the possibility to
calculate the exponents of the anomalous scaling.Comment: 9 pages, LaTeX2e(iopart.sty), submitted to J. Phys. A: Math. Ge
Neutral and ionic dopants in helium clusters: interaction forces for the and
The potential energy surface (PES) describing the interactions between
and and an extensive
study of the energies and structures of a set of small clusters,
, have been presented by us in a previous series of
publications [1-3]. In the present work we want to extend the same analysis to
the case of the excited and of the
ionized Li moiety. We thus show here calculated
interaction potentials for the two title systems and the corresponding fitting
of the computed points. For both surfaces the MP4 method with cc-pV5Z basis
sets has been used to generate an extensive range of radial/angular coordinates
of the two dimensional PES's which describe rigid rotor molecular dopants
interacting with one He partner
Locality and stability of the cascades of two-dimensional turbulence
We investigate and clarify the notion of locality as it pertains to the
cascades of two-dimensional turbulence. The mathematical framework underlying
our analysis is the infinite system of balance equations that govern the
generalized unfused structure functions, first introduced by L'vov and
Procaccia. As a point of departure we use a revised version of the system of
hypotheses that was proposed by Frisch for three-dimensional turbulence. We
show that both the enstrophy cascade and the inverse energy cascade are local
in the sense of non-perturbative statistical locality. We also investigate the
stability conditions for both cascades. We have shown that statistical
stability with respect to forcing applies unconditionally for the inverse
energy cascade. For the enstrophy cascade, statistical stability requires
large-scale dissipation and a vanishing downscale energy dissipation. A careful
discussion of the subtle notion of locality is given at the end of the paper.Comment: v2: 23 pages; 4 figures; minor revisions; resubmitted to Phys. Rev.
Electromagnetic Vacuum of Complex Media: Dipole Emission vs. Light Propagation, Vacuum Energy, and Local Field Factors
We offer a unified approach to several phenomena related to the
electromagnetic vacuum of a complex medium made of point electric dipoles. To
this aim, we apply the linear response theory to the computation of the
polarization field propagator and study the spectrum of vacuum fluctuations.
The physical distinction among the local density of states which enter the
spectra of light propagation, total dipole emission, coherent emission, total
vacuum energy and Schwinger-bulk energy is made clear. Analytical expressions
for the spectrum of dipole emission and for the vacuum energy are derived.
Their respective relations with the spectrum of external light and with the
Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk
energy are determined by the Dyson propagator. The emission spectrum and the
total vacuum energy are determined by the polarization propagator. An exact
relationship of proportionality between both propagators is found in terms of
local field factors. A study of the nature of stimulated emission from a single
dipole is carried out. Regarding coherent emission, it contains two components.
A direct one which is transferred radiatively and directly from the emitter
into the medium and whose spectrum is that of external light. And an indirect
one which is radiated by induced dipoles. The induction is mediated by one (and
only one) local field factor. Regarding the vacuum energy, we find that in
addition to the Schwinger-bulk energy the vacuum energy of an effective medium
contains local field contributions proportional to the resonant frequency and
to the spectral line-width.Comment: Typos fixed, journal ref. adde
Adsorption of arsenate on Fe-(hydr)oxide
Adsorption using metal oxide materials has been demonstrated to be an effective technique to remove hazardous materials from water, due to its easy operation, low cost, and high efficiency. The high number of oxyanions in aquatic ecosystems causes serious pollution problems. Removal of arsenate (H2AsO4 -), is one of the major concerns, since it is a highly toxic anion for life. Within the metal oxides, the iron oxide is considered as a suitable material for the elimination of oxyanions. The adsorption of H2AsO4 - on Fe-(hydr)oxide is through the formation of inner or outer sphere complexes. In this work, through computational methods, a complete characterization of the adsorbed surface complexes was performed. Three different pH conditions were simulated (acidic, intermediate and basic), and it was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Monodentate complex (MM1) was the most thermodynamically favourable complex with an adsorption energy of -96.0kJ/mol under intermediate pH conditions. © Published under licence by IOP Publishing Ltd
Dynamics of Passive-Scalar Turbulence
We present the first study of the dynamic scaling or multiscaling of
passive-scalar and passive-vector turbulence. For the Kraichnan version of
passive-scalar and passive-vector turbulence we show analytically, in both
Eulerian and quasi-Lagrangian frameworks, that simple dynamic scaling is
obtained but with different dynamic exponents. By developing the multifractal
model we show that dynamic multiscaling occurs in passive-scalar turbulence
only if the advecting velocity field is itself multifractal. We substantiate
our results by detailed numerical simulations in shell models of passive-scalar
advection.Comment: published versio
- …
