17,351 research outputs found

    Anomalous scaling in two and three dimensions for a passive vector field advected by a turbulent flow

    Full text link
    A model of the passive vector field advected by the uncorrelated in time Gaussian velocity with power-like covariance is studied by means of the renormalization group and the operator product expansion. The structure functions of the admixture demonstrate essential power-like dependence on the external scale in the inertial range (the case of an anomalous scaling). The method of finding of independent tensor invariants in the cases of two and three dimensions is proposed to eliminate linear dependencies between the operators entering into the operator product expansions of the structure functions. The constructed operator bases, which include the powers of the dissipation operator and the enstrophy operator, provide the possibility to calculate the exponents of the anomalous scaling.Comment: 9 pages, LaTeX2e(iopart.sty), submitted to J. Phys. A: Math. Ge

    Neutral and ionic dopants in helium clusters: interaction forces for the Li2(a3Σu+)HeLi_2(a^3\Sigma_u^+)-He and Li2+(X2Σg+)HeLi_2^+(X^2\Sigma_g^+)-He

    Full text link
    The potential energy surface (PES) describing the interactions between Li2(1Σu+)\mathrm{Li_{2}(^{1}\Sigma_{u}^{+})} and 4He\mathrm{^{4}He} and an extensive study of the energies and structures of a set of small clusters, Li2(He)n\mathrm{Li_{2}(He)_{n}}, have been presented by us in a previous series of publications [1-3]. In the present work we want to extend the same analysis to the case of the excited Li2(a3Σu+)\mathrm{Li_{2}}(a^{3}\Sigma_{u}^{+}) and of the ionized Li2+(X2Σg+)_{2}^{+}(X^{2}\Sigma_{g}^{+}) moiety. We thus show here calculated interaction potentials for the two title systems and the corresponding fitting of the computed points. For both surfaces the MP4 method with cc-pV5Z basis sets has been used to generate an extensive range of radial/angular coordinates of the two dimensional PES's which describe rigid rotor molecular dopants interacting with one He partner

    Locality and stability of the cascades of two-dimensional turbulence

    Get PDF
    We investigate and clarify the notion of locality as it pertains to the cascades of two-dimensional turbulence. The mathematical framework underlying our analysis is the infinite system of balance equations that govern the generalized unfused structure functions, first introduced by L'vov and Procaccia. As a point of departure we use a revised version of the system of hypotheses that was proposed by Frisch for three-dimensional turbulence. We show that both the enstrophy cascade and the inverse energy cascade are local in the sense of non-perturbative statistical locality. We also investigate the stability conditions for both cascades. We have shown that statistical stability with respect to forcing applies unconditionally for the inverse energy cascade. For the enstrophy cascade, statistical stability requires large-scale dissipation and a vanishing downscale energy dissipation. A careful discussion of the subtle notion of locality is given at the end of the paper.Comment: v2: 23 pages; 4 figures; minor revisions; resubmitted to Phys. Rev.

    Electromagnetic Vacuum of Complex Media: Dipole Emission vs. Light Propagation, Vacuum Energy, and Local Field Factors

    Full text link
    We offer a unified approach to several phenomena related to the electromagnetic vacuum of a complex medium made of point electric dipoles. To this aim, we apply the linear response theory to the computation of the polarization field propagator and study the spectrum of vacuum fluctuations. The physical distinction among the local density of states which enter the spectra of light propagation, total dipole emission, coherent emission, total vacuum energy and Schwinger-bulk energy is made clear. Analytical expressions for the spectrum of dipole emission and for the vacuum energy are derived. Their respective relations with the spectrum of external light and with the Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk energy are determined by the Dyson propagator. The emission spectrum and the total vacuum energy are determined by the polarization propagator. An exact relationship of proportionality between both propagators is found in terms of local field factors. A study of the nature of stimulated emission from a single dipole is carried out. Regarding coherent emission, it contains two components. A direct one which is transferred radiatively and directly from the emitter into the medium and whose spectrum is that of external light. And an indirect one which is radiated by induced dipoles. The induction is mediated by one (and only one) local field factor. Regarding the vacuum energy, we find that in addition to the Schwinger-bulk energy the vacuum energy of an effective medium contains local field contributions proportional to the resonant frequency and to the spectral line-width.Comment: Typos fixed, journal ref. adde

    Adsorption of arsenate on Fe-(hydr)oxide

    Get PDF
    Adsorption using metal oxide materials has been demonstrated to be an effective technique to remove hazardous materials from water, due to its easy operation, low cost, and high efficiency. The high number of oxyanions in aquatic ecosystems causes serious pollution problems. Removal of arsenate (H2AsO4 -), is one of the major concerns, since it is a highly toxic anion for life. Within the metal oxides, the iron oxide is considered as a suitable material for the elimination of oxyanions. The adsorption of H2AsO4 - on Fe-(hydr)oxide is through the formation of inner or outer sphere complexes. In this work, through computational methods, a complete characterization of the adsorbed surface complexes was performed. Three different pH conditions were simulated (acidic, intermediate and basic), and it was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Monodentate complex (MM1) was the most thermodynamically favourable complex with an adsorption energy of -96.0kJ/mol under intermediate pH conditions. © Published under licence by IOP Publishing Ltd

    Dynamics of Passive-Scalar Turbulence

    Get PDF
    We present the first study of the dynamic scaling or multiscaling of passive-scalar and passive-vector turbulence. For the Kraichnan version of passive-scalar and passive-vector turbulence we show analytically, in both Eulerian and quasi-Lagrangian frameworks, that simple dynamic scaling is obtained but with different dynamic exponents. By developing the multifractal model we show that dynamic multiscaling occurs in passive-scalar turbulence only if the advecting velocity field is itself multifractal. We substantiate our results by detailed numerical simulations in shell models of passive-scalar advection.Comment: published versio
    corecore