1,265 research outputs found
Melt viscosities of lattice polymers using a Kramers potential treatment
Kramers relaxation times and relaxation times and
for the end-to-end distances and for center of mass diffusion are
calculated for dense systems of athermal lattice chains. is defined
from the response of the radius of gyration to a Kramers potential which
approximately describes the effect of a stationary shear flow. It is shown that
within an intermediate range of chain lengths N the relaxation times
and exhibit the same scaling with N, suggesting that N-dependent
melt-viscosities for non-entangled chains can be obtained from the Kramers
equilibrium concept.Comment: submitted to: Journal of Chemical Physic
Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development
Atomic partial charges appear in the Coulomb term of many force-field models
and can be derived from electronic structure calculations with a myriad of
atoms-in-molecules (AIM) methods. More advanced models have also been proposed,
using the distributed nature of the electron cloud and atomic multipoles. In
this work, an electrostatic force field is defined through a concise
approximation of the electron density, for which the Coulomb interaction is
trivially evaluated. This approximate "pro-density" is expanded in a minimal
basis of atom-centered s-type Slater density functions, whose parameters are
optimized by minimizing the Kullback-Leibler divergence of the pro-density from
a reference electron density, e.g. obtained from an electronic structure
calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS),
is a variant of the Hirshfeld AIM method but it can also be used as a
density-fitting technique. An iterative algorithm to refine the pro-density is
easily implemented with a linear-scaling computational cost, enabling
applications to supramolecular systems. The benefits of the MBIS method are
demonstrated with systematic applications to molecular databases and extended
models of condensed phases. A comparison to 14 other AIM methods shows its
effectiveness when modeling electrostatic interactions. MBIS is also suitable
for rescaling atomic polarizabilities in the Tkatchenko-Sheffler scheme for
dispersion interactions.Comment: 61 pages, 12 figures, 2 table
Rotamer-Restricted Fluorogenicity Of The Bis-Arsenical ReAsH
Fluorogenic dyes such as FlAsH and ReAsH are used widely to localize, monitor, and characterize proteins and their assemblies in live cells. These bis-arsenical dyes can become fluorescent when bound to a protein containing four proximal Cys thiols—a tetracysteine (Cys4) motif. Yet the mechanism by which bis-arsenicals become fluorescent upon binding a Cys4 motif is unknown, and this nescience limits more widespread application of this tool. Here we probe the origins of ReAsH fluorogenicity using both computation and experiment. Our results support a model in which ReAsH fluorescence depends on the relative orientation of the aryl chromophore and the appended arsenic chelate: the fluorescence is rotamer-restricted. Our results do not support a model in which fluorogenicity arises from the relief of ring strain. The calculations identify those As–aryl rotamers that support fluorescence and those that do not and correlate well with prior experiments. The rotamer-restricted model we propose is supported further by biophysical studies: the excited-state fluorescence lifetime of a complex between ReAsH and a protein bearing a high-affinity Cys4 motif is longer than that of ReAsH-EDT2, and the fluorescence intensity of ReAsH-EDT2 increases in solvents of increasing viscosity. By providing a higher resolution view of the structural basis for fluorogenicity, these results provide a clear strategy for the design of more selective bis-arsenicals and better-optimized protein targets, with a concomitant improvement in the ability to characterize previously invisible protein conformational changes and assemblies in live cells
Influence of a knot on the strength of a polymer strand
Many experiments have been done to determine the relative strength of
different knots, and these show that the break in a knotted rope almost
invariably occurs at a point just outside the `entrance' to the knot. The
influence of knots on the properties of polymers has become of great interest,
in part because of their effect on mechanical properties. Knot theory applied
to the topology of macromolecules indicates that the simple trefoil or
`overhand' knot is likely to be present with high probability in any long
polymer strand. Fragments of DNA have been observed to contain such knots in
experiments and computer simulations. Here we use {\it ab initio} computational
methods to investigate the effect of a trefoil knot on the breaking strength of
a polymer strand. We find that the knot weakens the strand significantly, and
that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure
Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Benard Convection
The origin of the power-law decay measured in the power spectra of low
Prandtl number Rayleigh-Benard convection near the onset of chaos is addressed
using long time numerical simulations of the three-dimensional Boussinesq
equations in cylindrical domains. The power-law is found to arise from
quasi-discontinuous changes in the slope of the time series of the heat
transport associated with the nucleation of dislocation pairs and roll
pinch-off events. For larger frequencies, the power spectra decay exponentially
as expected for time continuous deterministic dynamics.Comment: (10 pages, 6 figures
Development of an anthropomorphic breast phantom for combined PET, B-mode ultrasound and elastographic imaging
International audienceCombining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED)
- …