400 research outputs found

    The WIYN Open Cluster Study Photometric Binary Survey: Initial Findings for NGC 188

    Full text link
    The WIYN open cluster study (WOCS) has been working to yield precise magnitudes in the Johnson-Kron-Cousins UBVRI system for all stars in the field of a selection of ``prototypical'' open clusters. Additionally, WOCS is using radial velocities to obtain orbit solutions for all cluster binary stars with periods of less than 1000 days. Recently, WOCS is being expanded to include the near-infrared JHK_s (deep ground-based plus 2MASS) and mid-infrared ([3.6], [4.5], [5.8], [8.0]) photometry from Spitzer/IRAC observations. This multi-wavelength data (0.3--8.0 microns) allows us photometrically to identify binaries, with mass ratios from 1.0--0.3, across a wide range of primary masses. The spectral energy distribution (SED) fitter by Robitaille et al. (2007) is used to fit the fluxes of 10--12 bands, converted from the observed magnitudes, to Kurucz stellar models. Using this photometric technique, we find that NGC 188 has a binary fraction of 36--49% and provide a star-by-star comparison to the WOCS radial velocity-based binary study.Comment: 2 pages, 2 figures, Conference Proceedings from "Dynamical Evolution of Dense Stellar Systems'', IAU Symposium 246, Eds. E. Vesperini, M. Giersz, & A. Sill

    Old open clusters in the outer Galactic disk

    Full text link
    The outer parts of the Milky Way disk are believed to be one of the main arenas where the accretion of external material in the form of dwarf galaxies and subsequent formation of streams is taking place. The Monoceros stream and the Canis Major and Argo over-densities are notorious examples. VLT high resolution spectra have been acquired for five distant open clusters. We derive accurate radial velocities to distinguish field interlopers and cluster members. For the latter we perform a detailed abundance analysis and derive the iron abundance [Fe/H] and the abundance ratios of several α\alpha elements. Our analysis confirms previous indications that the radial abundance gradient in the outer Galactic disk does not follow the expectations extrapolated from the solar vicinity, but exhibits a shallower slope. By combining the metallicity of the five program clusters with eight more clusters for which high resolution spectroscopy is available, we find that the mean metallicity in the outer disk between 12 and 21 kpc from the Galactic center is [Fe/H] ≈−0.35\approx -0.35, with only marginal indications for a radial variation. In addition, all the program clusters exhibit solar scaled or slightly enhanced α\alpha elements, similar to open clusters in the solar vicinity and thin disk stars. We investigate whether this outer disk cluster sample might belong to an extra-galactic population, like the Monoceros ring. However, close scrutiny of their properties - location, kinematics and chemistry - does not convincingly favor this hypothesis. On the contrary, they appear more likely genuine Galactic disk clusters. We finally stress the importance to obtain proper motion measurements for these clusters to constrain their orbits.Comment: 19 pages, 9 eps figure, in press in A&A, abstract rephrased to fit i

    Precision Astrometry, Galactic Mergers, Halo Substructure and Local Dark Matter

    Full text link
    The concordance Cold Dark Matter model for the formation of structure in the Universe, while remarkably successful at describing observations on large scales, has a number of problems on galaxy scales. The Milky Way and its satellite system provide a key laboratory for exploring dark matter (DM) in this regime, but some of the most definitive tests of local DM await microarcsecond astrometry, such as will be delivered by the Space Interferometry Mission (SIM Planetquest). I discuss several tests of Galactic DM enabled by future microarcsecond astrometry.Comment: 8 pages, 3 figures, Proceedings of IAU Symposium 248 "A Giant Step: from Milli- to Micro-arcsecond Astrometr

    The inner structure and kinematics of the Sagittarius dwarf galaxy as a product of tidal stirring

    Full text link
    The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present known orbit of the dwarf, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10^8 M_sun. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10^10 M_sun, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.Comment: 14 pages, 14 figures, minor changes to match the version published in Ap

    Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Bootes

    Get PDF
    We report the results of a spectroscopic study of the Bootes (Boo) dwarf spheroidal (dSph) galaxy carried out with the WIYN telescope and the Hydra multifiber spectrograph. Radial velocities have been measured for 58 Boo candidate stars selected to have magnitudes and colors consistent with its red and asymptotic giant branches. Within the 13' half-light radius, seven members of Boo yield a systemic velocity of V_r=95.6+-3.4 km/s and a velocity dispersion of 6.6+-2.3 km/s. This implies a mass on the order of 1 x 10^7 M_sun, similar to the inferred masses of other Galactic dSphs. Adopting a total Boo luminosity of L=1.8 x 10^4 L_sun to 8.6 x 10^4 L_sun implies M/L ~ 610 to 130, making Boo, the most distorted known Milky Way dwarf galaxy, potentially also the darkest. From the spectra of Boo member stars we estimate its metallicity to be [Fe/H] ~ -2.5, which would make it the most metal poor dSph known to date.Comment: Accepted for publication in ApJ Letter
    • 

    corecore