166 research outputs found
Suppressing Recoil Heating in Levitated Optomechanics using Squeezed Light
We theoretically show that laser recoil heating in free-space levitated
optomechanics can be arbitrarily suppressed by shining squeezed light onto an
optically trapped nanoparticle. The presence of squeezing modifies the quantum
electrodynamical light-matter interaction in a way that enables us to control
the amount of information that the scattered light carries about a given
mechanical degree of freedom. Moreover, we analyze the trade-off between
measurement imprecision and back-action noise and show that optical detection
beyond the standard quantum limit can be achieved. We predict that, with
state-of-the-art squeezed light sources, laser recoil heating can be reduced by
at least 60% by squeezing a single Gaussian mode with an appropriate incidence
direction, and by 98% by squeezing a properly mode-matched mode. Our results,
which are valid both for motional and librational degrees of freedom, will lead
to improved feedback cooling schemes as well as boost the coherence time of
optically levitated nanoparticles in the quantum regime.Comment: 16 pages, 5 figure
Optically levitated nanoparticle as a model system for stochastic bistable dynamics
Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.inancial support from the ERC- QnanoMECA (Grant No. 64790), the Spanish Ministry of Economy and Competitiveness, under grant FIS2016-80293-R and through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), Fundació Privada CELLEX and from the CERCA Programme/Generalitat de Catalunya. J.G. has been supported by H2020-MSCA-IF-2014 under REA grant Agreement No. 655369. L.R. acknowledges support from an ETH Marie Curie Cofund Fellowship
Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires
Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between and , depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires
Metal nanoparticles for microscopy and spectroscopy
Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications
Spontaneous emission near resonant optical antennas
Martin Frimmer bouwde een nieuw type microscoop die de spontane emissie van een lichtbron kan peilen tijdens het scannen over een vlak monster. Daarbij kan een kaart van de emissie van de bron worden verkregen. De bron van spontane emissie is bevestigd aan een zogeheten scanning probe en kan worden gepositioneerd met nanometrische precisie, terwijl het verval wordt gemeten met tijd-gecorreleerde enkele-foton (lichtdeeltje) telling. Het is bekend dat spontane emissie, een van de fundamentele processen waarbij licht ontstaat, afhangt van de locatie van de bron en zijn fotonische omgeving. Metaal-structuren, veel kleiner dan de golflengte van licht, kunnen worden gebruikt om de eigenschappen van het emissieproces aan te passen. Het onderzoek van Martin Frimmer verduidelijkt in theorie en experiment hoe spontane emissie kan worden gebruikt voor de vervalsnelheid van moleculaire lichtbronnen. In het bijzonder richtte hij zich
- …