419 research outputs found
Charge fluctuations in chiral models and the QCD phase transition
We consider the Polyakov loop-extended two flavor chiral quark--meson model
and discuss critical phenomena related with the spontaneous breaking of the
chiral symmetry. The model is explored beyond the mean-field approximation in
the framework of the functional renormalisation group. We discuss properties of
the net-quark number density fluctuations as well as their higher cumulants. We
show that with the increasing net-quark number density, the higher order
cumulants exhibit a strong sensitivity to the chiral crossover transition. We
discuss their role as probes of the chiral phase transition in heavy-ion
collisions at RHIC and LHC.Comment: 4 pages, 3 figures, to appear in the proceedings of Quark Matter
2011, 23-28 May 2011, Annecy, Franc
Vacuum fluctuations and the thermodynamics of chiral models
We consider the thermodynamics of chiral models in the mean-field
approximation and discuss the relevance of the (frequently omitted) fermion
vacuum loop. Within the chiral quark-meson model and its Polyakov loop extended
version, we show that the fermion vacuum fluctuations can change the order of
the phase transition in the chiral limit and strongly influence physical
observables. We compute the temperature-dependent effective potential and
baryon number susceptibilities in these models, with and without the vacuum
term, and explore the cutoff and the pion mass dependence of the
susceptibilities. Finally, in the renormalized model the divergent vacuum
contribution is removed using the dimensional regularization.Comment: 9 pages, 5 figure
The renormalization group and quark number fluctuations in the Polyakov loop extended quark-meson model at finite baryon density
Thermodynamics and the phase structure of the Polyakov loop-extended two
flavors chiral quark--meson (PQM) model is explored beyond the mean-field
approximation. The analysis of the PQM model is based on the functional
renormalization group (FRG) method. We formulate and solve the renormalization
group flow equation for the scale-dependent thermodynamic potential in the
presence of the gluonic background field at finite temperature and density. We
determine the phase diagram of the PQM model in the FRG approach and discuss
its modification in comparison with the one obtained under the mean-field
approximation. We focus on properties of the net-quark number density
fluctuations as well as their higher moments and discuss the influence of
non-perturbative effects on their properties near the chiral crossover
transition. We show, that with an increasing net-quark number density the
higher order moments exhibit a peculiar structure near the phase transition. We
also consider ratios of different moments of the net-quark number density and
discuss their role as probes of deconfinement and chiral phase transitions
Mapping the phase diagram of strongly interacting matter
We employ a conformal mapping to explore the thermodynamics of strongly
interacting matter at finite values of the baryon chemical potential .
This method allows us to identify the singularity corresponding to the critical
point of a second-order phase transition at finite , given information
only at . The scheme is potentially useful for computing thermodynamic
properties of strongly interacting hot and dense matter in lattice gauge
theory. The technique is illustrated by an application to a chiral effective
model.Comment: 5 pages, 3 figures; published versio
Studying the properties in pA collisions via the decay
Within transport calculations we study the production and decay of
-mesons in reactions at COSY energies including elastic and
inelastic rescattering, the Dalitz decay
as well as rescattering. The resulting invariant mass
distributions indicate that in-medium modifications of the -meson may
be observed experimentally.Comment: 5 pages, espcrc2-style, including 5 ps-figure
The effective mass of two--dimensional 3He
We use structural information from diffusion Monte Carlo calculations for
two--dimensional 3He to calculate the effective mass. Static effective
interactions are constructed from the density-- and spin structure functions
using sumrules. We find that both spin-- and density-- fluctuations contribute
about equally to the effective mass. Our results show, in agreement with recent
experiments, a flattening of the single--particle self--energy with increasing
density, which eventually leads to a divergent effective mass.Comment: 4 pages, accepted in PR
Non-perturbative dynamics and charge fluctuations in effective chiral models
We discuss the properties of fluctuations of the electric charge in the
vicinity of the chiral crossover transition within effective chiral models at
finite temperature and vanishing net baryon density. The calculation includes
non-perturbative dynamics implemented within the functional renormalization
group approach. We study the temperature dependence of the electric charge
susceptibilities in the linear sigma model and explore the role of quantum
statistics. Within the Polyakov loop extended quark-meson model, we study the
influence of the coupling of quarks to mesons and to an effective gluon field
on charge fluctuations. We find a clear signal for the chiral crossover
transition in the fluctuations of the electric charge. Accordingly, we stress
the role of higher order cumulants as probes of criticality related to the
restoration of chiral symmetry and deconfinement.Comment: 12 pages, 3 figure
Higher-order ratios of baryon number cumulants
The relevance of higher order cumulants of net baryon number fluctuations for
the analysis of freeze-out and critical conditions in heavy-ion collisions at
LHC and RHIC is addressed. The sign structure of the higher order cumulants in
the vicinity of the chiral crossover temperature might be a sensitive probe and
may allow to elucidate their relation to the QCD phase transition. We calculate
ratios of generalized quark-number susceptibilities to high orders in three
flavor QCD-like models and investigate their sign structure close to the chiral
crossover line.Comment: presented at the International Conference "Critical Point and Onset
of Deconfinement - CPOD 2011", Wuhan, November 7-11, 2011; version to appear
in Cent. Eur. J. Phy
High density QCD on a Lefschetz thimble?
It is sometimes speculated that the sign problem that afflicts many quantum
field theories might be reduced or even eliminated by choosing an alternative
domain of integration within a complexified extension of the path integral (in
the spirit of the stationary phase integration method). In this paper we start
to explore this possibility somewhat systematically. A first inspection reveals
the presence of many difficulties but - quite surprisingly - most of them have
an interesting solution. In particular, it is possible to regularize the
lattice theory on a Lefschetz thimble, where the imaginary part of the action
is constant and disappears from all observables. This regularization can be
justified in terms of symmetries and perturbation theory. Moreover, it is
possible to design a Monte Carlo algorithm that samples the configurations in
the thimble. This is done by simulating, effectively, a five dimensional
system. We describe the algorithm in detail and analyze its expected cost and
stability. Unfortunately, the measure term also produces a phase which is not
constant and it is currently very expensive to compute. This residual sign
problem is expected to be much milder, as the dominant part of the integral is
not affected, but we have still no convincing evidence of this. However, the
main goal of this paper is to introduce a new approach to the sign problem,
that seems to offer much room for improvements. An appealing feature of this
approach is its generality. It is illustrated first in the simple case of a
scalar field theory with chemical potential, and then extended to the more
challenging case of QCD at finite baryonic density.Comment: Misleading footnote 1 corrected: locality deserves better
investigations. Formula (31) corrected (we thank Giovanni Eruzzi for this
observation). Note different title in journal versio
Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations
This is the author accepted manuscript. The final version is available from OUP via the DOI in this record.Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.This work was funded by European Research Council and NERC (UK)
- …