128 research outputs found

    Integrated Germanium-on-silicon Waveguides for Mid-infrared Photonic Sensing Chips

    Get PDF
    Germanium-on-silicon waveguides are designed, fabricated and characterized with a novel near-field infrared spectroscopy technique that allows on-chip investigation of the in-coupling efficiency. On-chip propagation along bends and straight sections up to 0.8 mm is demonstrated around λ = 6 μm

    Benchmarking the Use of Heavily-Doped Ge Against Noble Metals for Plasmonics and Sensing in the Mid-Infrared

    Get PDF
    Despite the recent introduction of heavily-doped semiconductors for mid-infrared plasmonics, it still remains an open point whether such materials can compete with noble metals. We employ a whole set of figures of merit to thoroughly assess the use of heavily-doped Ge on Si as a mid-infrared plasmonic material and benchmark it against standard noble metals such as Au. In doing this, we design and model high-performance, CMOS compatible mid-infrared plasmonic sensors based on experimental material data reaching plasma frequencies up to about 1950 cm−1. We demonstrate that plasmonic Ge sensors can provide signal enhancements for vibrational spectroscopy above 3 orders of magnitude, thus representing a viable alternative to noble metals

    Mid-Infrared Plasmonic Platform based on Heavily Doped Epitaxial Ge-on-Si: Retrieving the Optical Constants of Thin Ge Epilayers

    Full text link
    The n-type Ge-on-Si epitaxial material platform enables a novel paradigm for plasmonics in the mid-infrared, prompting the future development of lab-on-a-chip and subwavelength vibrational spectroscopic sensors. In order to exploit this material, through proper electrodynamic design, it is mandatory to retrieve the dielectric constants of the thin Ge epilayers with high precision due to the difference from bulk Ge crystals. Here we discuss the procedure we have employed to extract the real and imaginary part of the dielectric constants from normal incidence reflectance measurements, by combining the standard multilayer fitting procedure based on the Drude model with Kramers-Kronig transformations of absolute reflectance data in the zero-transmission range of the thin film.Comment: Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference o

    Germanium Plasmonic Nanoantennas for Third-Harmonic Generation in the Mid Infrared

    Get PDF
    We explore the nonlinear optical properties of plasmonic semiconductor antennas resonant in the mid infrared. The nanostructures are fabricated on silicon substrates from heavily doped germanium films with a plasma frequency of 30 THz, equivalent to a wavelength of 10 μm. Illumination with ultrashort pulses at 10.8 μm produces coherent emission at 3.6 μm via third-harmonic generation

    Germanium-on-silicon Waveguides for Mid-infrared Photonic Sensing Chips

    Get PDF
    Germanium-on-silicon rib waveguides are modelled, fabricated and characterized with a novel near-field infrared spectroscopy technique that allows on-chip investigation of the waveguide losses at 5.8 μm wavelength

    Modeling of second harmonic generation in hole-doped silicon-germanium quantum wells for mid-infrared sensing

    Get PDF
    The development of Ge and SiGe chemical vapor deposition techniques on silicon wafers has enabled the integration of multi-quantum well structures in silicon photonics chips for nonlinear optics with potential applications to integrated nonlinear optics, however research has focused up to now on undoped quantum wells and interband optical excitations. In this work, we present model calculations for the giant nonlinear coefficients provided by intersubband transitions in hole-doped Ge/SiGe and Si/SiGe multi-quantum wells. We employ a valence band-structure model for Si1-xGex to calculate the confined hole states of asymmetric-coupled quantum wells for second-harmonic generation in the mid-infrared. We calculate the nonlinear emission spectra from the second-order susceptibility tensor, including the particular vertical emission spectra of valence-band quantum wells. Two possible nonlinear mid-infrared sensor architectures, one based on waveguides and another based on metasurfaces, are described as perspective application

    Optical activation of germanium plasmonic antennas in the mid-infrared

    Get PDF
    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas

    Group-IV midinfrared plasmonics

    Get PDF
    The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials
    • …
    corecore