225 research outputs found

    Pseudo-digital quantum bits

    Get PDF
    Quantum computers are analog devices; thus they are highly susceptible to accumulative errors arising from classical control electronics. Fast operation--as necessitated by decoherence--makes gating errors very likely. In most current designs for scalable quantum computers it is not possible to satisfy both the requirements of low decoherence errors and low gating errors. Here we introduce a hardware-based technique for pseudo-digital gate operation. We perform self-consistent simulations of semiconductor quantum dots, finding that pseudo-digital techniques reduce operational error rates by more than two orders of magnitude, thus facilitating fast operation.Comment: 4 pages, 3 figure

    Is parking in europe ready for dynamic pricing? A reality check for the private sector

    Get PDF
    Both Revenue Management (RM) and Dynamic Pricing (DP) are common practices in many industries-e.g., airlines and hotels-but they are still relatively unknown in the parking sector. In Europe, with the exception of for airport parking and in some pilot tests, DP is rarely used by private parking operators or local authorities. The main objective of this conceptual paper is to set an agenda for introducing DP in the private parking sector at a larger scale. After a short review of the existing academic and gray literature, we describe the requirements and instruments that parking companies need to make use of RM. Next, we shortly report on the major existing and/or planned DP parking schemes in Europe. We continue by providing a comprehensive reality check discussing the major challenges the sector faces to apply DP. We conclude by suggesting a road map for private parking operators to successfully implement RM and DP. Finally, we give some indications for future research

    Efficient multiqubit entanglement via a spin-bus

    Get PDF
    We propose an experimentally feasible architecture with controllable long-range couplings built up from local exchange interactions. The scheme consists of a spin-bus, with strong, always-on interactions, coupled dynamically to external qubits of the Loss and DiVincenzo type. Long-range correlations are enabled by a spectral gap occurring in a finite-size chain. The bus can also form a hub for multiqubit entangling operations. We show how multiqubit gates may be used to efficiently generate WW-states (an important entanglement resource). The spin-bus therefore provides a route for scalable solid-state quantum computation, using currently available experimental resources.Comment: Published versio

    Spin Readout and Initialization in a Semiconductor Quantum Dot

    Full text link
    Electron spin qubits in semiconductors are attractive from the viewpoint of long coherence times. However, single spin measurement is challenging. Several promising schemes incorporate ancillary tunnel couplings that may provide unwanted channels for decoherence. Here, we propose a novel spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot by microwave excitation. The same quantum dot can be used for rapid initialization, gating, and readout. We present detailed modeling of such a device in silicon to confirm its feasibility.Comment: Published versio

    Sensitivity of quantum gate fidelity to laser phase and intensity noise

    Full text link
    The fidelity of gate operations on neutral atom qubits is often limited by fluctuations of the laser drive. Here, we quantify the sensitivity of quantum gate fidelities to laser phase and intensity noise. We first develop models to identify features observed in laser self-heterodyne noise spectra, focusing on the effects of white noise and servo bumps. In the weak-noise regime, characteristic of well-stabilized lasers, we show that an analytical theory based on a perturbative solution of a master equation agrees very well with numerical simulations that incorporate phase noise. We compute quantum gate fidelities for one- and two-photon Rabi oscillations and show that they can be enhanced by an appropriate choice of Rabi frequency relative to spectral noise peaks. We also analyze the influence of intensity noise with spectral support smaller than the Rabi frequency. Our results establish requirements on laser noise levels needed to achieve desired gate fidelities.Comment: v3: added analysis of the Lambda configuratio
    • …
    corecore