4,479 research outputs found
Hadronization of Dense Partonic Matter
The parton recombination model has turned out to be a valuable tool to
describe hadronization in high energy heavy ion collisions. I review the model
and revisit recent progress in our understanding of hadron correlations. I also
discuss higher Fock states in the hadrons, possible violations of the elliptic
flow scaling and recombination effects in more dilute systems.Comment: 8 pages, 4 figures; plenary talk delivered at SQM 2006, to appear in
J. Phys.
Recombination Models
We review the current status of recombination and coalescence models that
have been successfully applied to describe hadronization in heavy ion
collisions at RHIC energies. Basic concepts as well as actual implementations
of the idea are discussed. We try to evaluate where we stand in our
understanding at the moment and what remains to be done in the future.Comment: Plenary Talk at Quark Matter 2004, submitted to J. Phys. G, 8 pages,
3 figure
Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase
We discuss hadron production in heavy ion collisions at RHIC. We argue that
hadrons at transverse momenta P_T < 5 GeV are formed by recombination of
partons from the dense parton phase created in central collisions at RHIC. We
provide a theoretical description of the recombination process for P_T > 2 GeV.
Below P_T = 2 GeV our results smoothly match a purely statistical description.
At high transverse momentum hadron production is well described in the language
of perturbative QCD by the fragmentation of partons. We give numerical results
for a variety of hadron spectra, ratios and nuclear suppression factors. We
also discuss the anisotropic flow v_2 and give results based on a flow in the
parton phase. Our results are consistent with the existence of a parton phase
at RHIC hadronizing at a temperature of 175 MeV and a radial flow velocity of
0.55c.Comment: 25 pages LaTeX, 18 figures; v2: some references updated; v3: some
typos fixe
Brain rhythms define distinct interaction networks with differential dependence on anatomy
Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation, and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, networks of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms. Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm per module. To understand how this distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical projection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the gamma rhythm
The charged-hadron/pion ratio at the Relativistic Heavy Ion Collider
The hadron/pion ratio is calculated in 200 GeV AuAu collisions at
midrapidity, applying pQCD and non-universal transverse-momentum broadening.
Arguments are presented for such non-universality, and the idea is implemented
in a model, which explains the enhancement of the hadron/pion ratio in central
AuAu collisions. The model also describes the qualitative difference between
the recently-measured dAu nuclear enhancement factors for pions and charged
hadrons.Comment: 4 pages, 3 figure
Microstructural enrichment functions based on stochastic Wang tilings
This paper presents an approach to constructing microstructural enrichment
functions to local fields in non-periodic heterogeneous materials with
applications in Partition of Unity and Hybrid Finite Element schemes. It is
based on a concept of aperiodic tilings by the Wang tiles, designed to produce
microstructures morphologically similar to original media and enrichment
functions that satisfy the underlying governing equations. An appealing feature
of this approach is that the enrichment functions are defined only on a small
set of square tiles and extended to larger domains by an inexpensive stochastic
tiling algorithm in a non-periodic manner. Feasibility of the proposed
methodology is demonstrated on constructions of stress enrichment functions for
two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first
revie
Statistical Physics and Light-Front Quantization
Light-front quantization has important advantages for describing relativistic
statistical systems, particularly systems for which boost invariance is
essential, such as the fireball created in a heavy ion collisions. In this
paper we develop light-front field theory at finite temperature and density
with special attention to quantum chromodynamics. We construct the most general
form of the statistical operator allowed by the Poincare algebra and show that
there are no zero-mode related problems when describing phase transitions. We
then demonstrate a direct connection between densities in light-front thermal
field theory and the parton distributions measured in hard scattering
experiments. Our approach thus generalizes the concept of a parton distribution
to finite temperature. In light-front quantization, the gauge-invariant Green's
functions of a quark in a medium can be defined in terms of just 2-component
spinors and have a much simpler spinor structure than the equal-time fermion
propagator. From the Green's function, we introduce the new concept of a
light-front density matrix, whose matrix elements are related to forward and to
off-diagonal parton distributions. Furthermore, we explain how thermodynamic
quantities can be calculated in discretized light-cone quantization, which is
applicable at high chemical potential and is not plagued by the
fermion-doubling problem.Comment: 30 pages, 3 figures; v2: Refs. added, minor changes, accepted for
publication in PR
Particle correlations at RHIC from parton coalescence dynamics -- first results
A new dynamical approach that combines covariant parton transport theory with
hadronization channels via parton coalescence and fragmentation is applied to
Au+Au at RHIC. Basic consequences of the simple coalescence formulas, such as
elliptic flow scaling and enhanced proton/pion ratio, turn out to be rather
sensitive to the spacetime aspects of coalescence dynamics.Comment: Contribution to Quark Matter 2004 (January 11-17, 2004, Oakland, CA).
4 pages, 2 EPS figs, IOP style fil
- …