7,432 research outputs found

    Hadronization of Dense Partonic Matter

    Get PDF
    The parton recombination model has turned out to be a valuable tool to describe hadronization in high energy heavy ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.Comment: 8 pages, 4 figures; plenary talk delivered at SQM 2006, to appear in J. Phys.

    Early Time Evolution of High Energy Heavy Ion Collisions

    Get PDF
    We solve the Yang-Mills equations in the framework of the McLerran-Venugopalan model for small times tau after a collision of two nuclei. An analytic expansion around tau=0 leads to explicit results for the field strength and the energy momentum tensor of the gluon field at early times. We then discuss constraints for the energy density, pressure and flow of the plasma phase that emerges after thermalization of the gluon field.Comment: 4 pages, 1 figure; contribution to Quark Matter 2006; submitted to J. Phys.

    Rapidity Profile of the Initial Energy Density in Heavy-Ion Collisions

    Get PDF
    The rapidity dependence of the initial energy density in heavy-ion collisions is calculated from a three-dimensional McLerran-Venugopalan model (3dMVn) introduced by Lam and Mahlon. This model is infrared safe since global color neutrality is enforced. In this non-boost-invariant framework, the nuclei have non-zero thickness in the longitudinal direction. This results in Bjorken-x dependent unintegrated gluon distribution functions which lead to a rapidity-dependent initial energy density after the collision. The initial energy density and its rapidity dependence are important initial conditions for the quark gluon plasma and its hydrodynamic evolution.Comment: 7 pages, 2 figures. Matches the published versio

    Hybrid Hadronization

    Full text link
    We discuss Hybrid Hadronization, a hadronization model which interpolates between string fragmentation in dilute parton systems and quark recombination in dense parton systems. We lay out the basic principles, discuss some details of the implementation, and show some prelimiary results. Hybrid Hadronization is realized as a software package which works with PYTHIA 8 and will be released publicly in the near future.Comment: 4 pages, 2 figures; Contribution to Hard Probes 201
    corecore