38 research outputs found

    Contribution of maternal effects to dietary selection in Mediterranean fruit flies

    Get PDF
    Individual responses to dietary variation represent a fundamental component of fitness, and nutritional adaptation can occur over just a few generations. Maternal effects can show marked proximate responses to nutrition, but whether they contribute to longer term dietary adaptation is unclear. Here, we tested the hypotheses that maternal effects: (i) contribute to dietary adaptation, (ii) diminish when dietary conditions are constant between generations, (iii) are trait-specific and (iv) interact with high- and low-quality food. We used experimental evolution regimes in the medfly (Ceratitis capitata) to test these predictions by subjecting an outbred laboratory-adapted population to replicated experimental evolution on either constant high calorie sugar (‘A’) or low-calorie starch (‘S’) larval diets, with a standard adult diet across both regimes. We measured the contribution of maternal effects by comparing developmental and adult phenotypes of individuals reared on their own diet with those swapped onto the opposite diet for either one or two generations (high and low maternal effect conditions, respectively), both at the start and after 30 generations of selection. Initially, there were strong maternal effects on female body mass and male mating success but not larval survival. Interestingly, the initial maternal effects observed in female body mass and male mating success showed sex-specific interactions when individuals from high calorie regimes were tested on low calorie diets. However, as populations responded to selection, the effects of maternal provisioning on all traits diminished. The results broadly supported the predictions. They show how the contribution of maternal effects to dietary responses evolves in a context-dependent manner, with significant variation across different fitness-related traits. We conclude that maternal effects can evolve during nutritional adaptation and hence may be an important life history trait to measure, rather than to routinely minimize

    Workers respond to unequal likelihood of future reproductive opportunities in an ant

    Get PDF
    In cooperatively-breeding or eusocial societies, opportunities may arise for helper individuals to gain direct fitness by reproducing. However, the extent to which helpers respond differentially, in terms of their reproductive behaviour, to the probability that reproductive opportunities will arise is not fully known. In many eusocial Hymenoptera, workers lay eggs only in queenless conditions following the death of the queen or queens. Relative to polygyny (multiple queens per colony), monogyny (single queen per colony) increases the probability that queenless conditions arise. We therefore tested the hypothesis that ant workers respond differentially to queenless conditions as a function of the probability of queenlessness. We compared worker behaviour and reproduction before and after removal of queens from monogynous and polygynous colonies of the ant Leptothorax acervorum. We found that, in queenless conditions, workers from monogynous colonies were significantly more likely to lay eggs, showed a significantly reduced latency to egg-laying, and laid eggs at a significantly higher rate per capita, than workers from polygynous colonies. In addition, before queen removal, workers that laid eggs in queenless conditions across both monogynous and polygynous colonies performed a range of behaviours associated with reproduction at significantly higher rates compared to non-reproductive, control workers. These 'future reproductive' workers also significantly reduced their rates of brood care following queen removal. These findings show that workers under monogyny reproduce more readily in queenless conditions than workers under polygyny, and that would-be reproductive workers alter their behaviour before they experience the opportunity for future reproduction. They therefore suggest that workers adaptively modulate their reproductive behaviour as a function of the likelihood of opportunities for direct reproduction arising, and that workers' behaviour is affected by the ability to gain direct fitness even when reproduction is currently not occurring

    A hydrodynamic scheme for two-component winds from hot stars

    Full text link
    We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.Comment: accepted to Astronomy and Astrophysic

    The masses, radii and luminosities of the components of U Geminorum

    Full text link
    We present a phase-resolved spectroscopic study of the secondary star in the cataclysmic variable U Gem. We use our data to measure the radial velocity semi-amplitude, systemic velocity and rotational velocity of the secondary star. Combining this with literature data allows us to determine masses and radii for both the secondary star and white dwarf which are independent of any assumptions about their structure. We use these to compare their properties with those of field stars and find that both components follow field mass-radius relationships. The secondary star has the mass, radius, luminosity and photometric temperature of an M2 star, but a spectroscopic temperature of M4. The latter may well be due to a high metallicity. There is a troubling inconsistency between the radius of the white dwarf inferred from its gravitational redshift and inclination and that inferred from its temperature, flux, and astrometric distance. We find that there are two fundamental limits to the accuracy of the parameters we can derive. First the radial velocity curve of the secondary star deviates from a sinusoid, in part because of its asphericity (which can be modelled) and in part because the line flux is not evenly distributed over its surface. Second we cannot be certain which spectral type is the best match for the lines of the secondary star, and the derived rotational velocity is a function of the spectral type of the template star used.Comment: 12 pages, 10 figures. Accepted for MNRA

    Optically thick clumps: not the solution to the Wolf-Rayet wind momentum problem?

    Get PDF
    The hot star wind momentum problem η = Mν∞/(L/c)» much greater than 1 is revisited, and it is shown that the conventional belief, that it can be solved by a combination of clumping of the wind and multiple scattering of photons, is not self-consistent for optically thick clumps. Clumping does reduce the mass loss rate M, and hence the momentum supply, required to generate a specified radio emission measure epsilon, while multiple scattering increases the delivery of momentum from a specified stellar luminosity L. However, in the case of thick clumps, when combined the two effects act in opposition rather than in unison since clumping reduces multiple scattering. From basic geometric considerations, it is shown that this reduction in momentum delivery by clumping more than offsets the reduction in momentum required, for a specified ε. Thus the ratio of momentum deliverable to momentum required is maximal for a smooth wind and the momentum problem remains for the thick clump case. In the case of thin clumps, all of the benefit of clumping in reducing η lies in reducing M for a given ε so that extremely small filling factors f ≈ 10-4 are needed. It is also shown that clumping affects the inference of M from radio ε not only by changing the emission measure per unit mass but also by changing the radio optical depth unity radius Rrad, and hence the observed wind volume, at radio wavelengths. In fact, for free-free opacity proportional to αn2, contrary to intuition, Rrad increases with increasing clumpiness

    Time-dependent 3D spectrum synthesis for type Ia supernovae

    Full text link
    A Monte Carlo code (ARTIS) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of gamma-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the co-moving frame. Assuming a photoionisation dominated plasma, the equations of ionisation equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well known W7 explosion model and the results tested against other studies. Finally the effect of asymmetric ejecta on broad band light curves and spectra is illustrated using an elliptical toy model.Comment: 20 pages, 13 figures. Accepted for publication by MNRA

    On the metallicity dependence of Wolf-Rayet winds

    Get PDF
    We have performed a pilot study of mass loss predictions for late-type Wolf-Rayet (WR) stars as a function of metal abundance, over a range between 10^{-5} < (Z/Zsun) < 10. We find that the winds of nitrogen-rich Wolf-Rayet stars are dominated by iron lines, with a dependence of mass loss on Z similar to that of massive OB stars. For more evolved, carbon-rich, WR stars the wind strength is also found to be dependent on the Fe abundance, so that they depend on the chemical environment of the host galaxy, but with a mass loss metallicity dependence that is less steep than for OB stars. Our finding that WR mass loss is Z-dependent is a new one, with important consequences for black hole formation and X-ray population studies in external galaxies. A further finding of our study is that the Z dependence of C-rich WR stars becomes weaker at metallicities below Z/Zsun < 1/10, and mass loss no longer declines once the metal abundance drops below (Z/Zsun) = 10^{-3}. This is the result of an increased importance of radiative driving by intermediate mass elements, such as carbon. In combination with rapid rotation and/or proximity to the Eddington limit -- likely to be relevant for massive Population III stars -- this effect may indicate a role for mass loss in the appearance and evolution of these objects, as well as a potential role for stellar winds in enriching the intergalactic medium of the early Universe.Comment: Accepted by Astronomy & Astrophysics (11 pages

    Wind modelling of very massive stars up to 300 solar masses

    Get PDF
    Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A factor that is often overlooked is that there might be a difference between the current and initial masses of the most massive stars, as a result of mass loss. We present Monte Carlo mass-loss predictions for very massive stars in the range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using our new dynamical approach, we find an upturn in the mass-loss vs. Gamma dependence, at the point where the winds become optically thick. This coincides with the location where wind efficiency numbers surpass the single-scattering limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a transition from common O-type winds to Wolf-Rayet characteristics at the point where the winds become optically thick. This transitional behaviour is also revealed with respect to the wind acceleration parameter beta, which starts at values below 1 for the optically thin O-stars, and naturally reaches values as high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding concerns the transition in spectral morphology of the Of and WN characteristic He II line at 4686 Angstrom. When we express our mass-loss predictions as a function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss Gamma dependence that is consistent with a previously reported power-law Mdot propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling approach. When we express Mdot in terms of both Gamma and stellar mass, we find Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that the Gamma-effect on the mass-loss predictions is much stronger than that of an increased helium abundance, calling for a fundamental revision in the way mass loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages, 10 figures

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure
    corecore