77 research outputs found
An ep collider with E/sub cm/=1 TeV in a VLHC booster tunnel
The low field option for the VLHC includes a 3 TeV proton booster with a circumference of 34 km. The authors are studying the option of an electron ring to fit in this tunnel which can produce ep collisions with a luminosity of 1 fb{sup {minus}1}/yr with a center of mass energy of 1 TeV. The machine would utilize superconducting rf and small low field magnets for the {approximately} 80 GeV electron beam. They describe the vacuum chamber/magnet system, rf power supply requirements, vacuum chamber cooling, interaction regions and installation of the facility in the tunnel, as well as provide preliminary estimates of beam stability and lifetimes
Muon (g-2) Technical Design Report
The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new
experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval
Mu2e Technical Design Report
The Mu2e experiment at Fermilab will search for charged lepton flavor
violation via the coherent conversion process mu- N --> e- N with a sensitivity
approximately four orders of magnitude better than the current world's best
limits for this process. The experiment's sensitivity offers discovery
potential over a wide array of new physics models and probes mass scales well
beyond the reach of the LHC. We describe herein the preliminary design of the
proposed Mu2e experiment. This document was created in partial fulfillment of
the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution
available at http://mu2e.fnal.gov; corrected typo in background summary,
Table 3.
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision
Polymers and biopolymers at interfaces
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
We present the first results of the Fermilab Muon g-2 Experiment for the
positive muon magnetic anomaly . The anomaly is
determined from the precision measurements of two angular frequencies.
Intensity variation of high-energy positrons from muon decays directly encodes
the difference frequency between the spin-precession and cyclotron
frequencies for polarized muons in a magnetic storage ring. The storage ring
magnetic field is measured using nuclear magnetic resonance probes calibrated
in terms of the equivalent proton spin precession frequency
in a spherical water sample at 34.7C. The
ratio , together with known fundamental
constants, determines
(0.46\,ppm). The result is 3.3 standard deviations greater than the standard
model prediction and is in excellent agreement with the previous Brookhaven
National Laboratory (BNL) E821 measurement. After combination with previous
measurements of both and , the new experimental average of
(0.35\,ppm) increases the
tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure
- …