1,018 research outputs found
Small Horizons
All near horizon geometries of supersymmetric black holes in a N=2, D=5
higher-derivative supergravity theory are classified. Depending on the choice
of near-horizon data we find that either there are no regular horizons, or
horizons exist and the spatial cross-sections of the event horizons are
conformal to a squashed or round S^3, S^1 * S^2, or T^3. If the conformal
factor is constant then the solutions are maximally supersymmetric. If the
conformal factor is not constant, we find that it satisfies a non-linear vortex
equation, and the horizon may admit scalar hair.Comment: 21 pages, latex. Typos corrected and reference adde
Heterotic Black Horizons
We show that the supersymmetric near horizon geometry of heterotic black
holes is either an AdS_3 fibration over a 7-dimensional manifold which admits a
G_2 structure compatible with a connection with skew-symmetric torsion, or it
is a product R^{1,1} * S^8, where S^8 is a holonomy Spin(7) manifold,
preserving 2 and 1 supersymmetries respectively. Moreover, we demonstrate that
the AdS_3 class of heterotic horizons can preserve 4, 6 and 8 supersymmetries
provided that the geometry of the base space is further restricted. Similarly
R^{1,1} * S^8 horizons with extended supersymmetry are products of R^{1,1} with
special holonomy manifolds. We have also found that the heterotic horizons with
8 supersymmetries are locally isometric to AdS_3 * S^3 * T^4, AdS_3 * S^3 * K_3
or R^{1,1} * T^4 * K_3, where the radii of AdS_3 and S^3 are equal and the
dilaton is constant.Comment: 35 pages, latex. Minor alterations to equation (3.11) and section
4.1, the conclusions are not affecte
A Rare Periosteal Diaphyseal Lesion of the Ulna
Periosteal lesions of the ulna diaphysis are rare, include a wide spectrum of tumors, and may cause considerable diagnostic problems. Surgical treatment may vary widely, based on an accurate diagnosis. We present the case of a periosteal, extraskeletal low grade myxoid chondrosarcoma of the ulna diaphysis. The surgical therapy included an en-bloc resection with allograft reconstruction. The patient showed a favorable outcome. Careful preoperative evaluation and planning are imperative to obtain a satisfactory oncological and functional outcome, especially with uncommon tumor presentations at rare locations
DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response
Surface plasmon resonances generated in metallic nanostructures can be
utilized to tailor electromagnetic fields. The precise spatial arrangement of
such structures can result in surprising optical properties that are not found
in any naturally occurring material. Here, the designed activity emerges from
collective effects of singular components equipped with limited individual
functionality. Top-down fabrication of plasmonic materials with a predesigned
optical response in the visible range by conventional lithographic methods has
remained challenging due to their limited resolution, the complexity of
scaling, and the difficulty to extend these techniques to three-dimensional
architectures. Molecular self-assembly provides an alternative route to create
such materials which is not bound by the above limitations. We demonstrate how
the DNA origami method can be used to produce plasmonic materials with a
tailored optical response at visible wavelengths. Harnessing the assembly power
of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2
nm into nanoscale helices. The helical structures assemble in solution in a
massively parallel fashion and with near quantitative yields. As a designed
optical response, we generated giant circular dichroism and optical rotary
dispersion in the visible range that originates from the collective
plasmon-plasmon interactions within the nanohelices. We also show that the
optical response can be tuned through the visible spectrum by changing the
composition of the metal nanoparticles. The observed effects are independent of
the direction of the incident light and can be switched by design between left-
and right-handed orientation. Our work demonstrates the production of complex
bulk materials from precisely designed nanoscopic assemblies and highlights the
potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure
Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands
to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—
EEG), which is processed while they perform specific mental tasks. While very
promising, MI-BCIs remain barely used outside laboratories because of the difficulty
encountered by users to control them. Indeed, although some users obtain good control
performances after training, a substantial proportion remains unable to reliably control an
MI-BCI. This huge variability in user-performance led the community to look for predictors of
MI-BCI control ability. However, these predictors were only explored for motor-imagery
based BCIs, and mostly for a single training session per subject. In this study, 18 participants
were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2
of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships
between the participants’ BCI control performances and their personality, cognitive
profile and neurophysiological markers were explored. While no relevant relationships with
neurophysiological markers were found, strong correlations between MI-BCI performances
and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive
model of MI-BCI performance based on psychometric questionnaire scores was proposed.
A leave-one-subject-out cross validation process revealed the stability and reliability of this
model: it enabled to predict participants’ performance with a mean error of less than 3
points. This study determined how users’ profiles impact their MI-BCI control ability and
thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of
each user
Implications of CTL-Mediated Killing of HIV-Infected Cells during the Non-Productive Stage of Infection
Patients infected with HIV exhibit orders of magnitude differences in their set-point levels of the plasma viral load. As to what extent this variation is due to differences in the efficacy of the cytotoxic T lymphocyte (CTL) response in these patients is unclear. Several studies have shown that HIV-infected CD4+ T cells also present viral epitopes that are recognized by CTLs before the productive stage of infection, i.e., during the intracellular eclipse phase before the infected cell starts to produce new viral particles. Here, we use mathematical modeling to investigate the potential impact of early killing of HIV-infected cells on viral replication. We suggest that the majority of CTL-mediated killing could occur during the viral eclipse phase, and that the killing of virus-producing cells could be substantially lower at later stages due to MHC-I-down-regulation. Such a mechanism is in agreement with several experimental observations that include CD8+ T cell depletion and antiretroviral drug treatment. This indicates a potentially important role of CTL-mediated killing during the non-productive stage of HIV-infected cells
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
GagCM9-Specific CD8+ T Cells Expressing Limited Public TCR Clonotypes Do Not Suppress SIV Replication In Vivo
Several lines of evidence suggest that HIV/SIV-specific CD8+ T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag45–269) that were subsequently infected with SIVsmE660. These seven Mamu-A*01+ animals developed CD8+ T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8+ T cells could not control virus replication in vivo. GagCM9-specific CD8+ T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8+ T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20–250 GagCM9-specific CD8+ T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8+ T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8+ T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8+ T cell population elicited by vaccination and infection
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
- …