2,559 research outputs found

    G_2 Domain Walls in M-theory

    Full text link
    M-theory is considered in its low-energy limit on a G_2 manifold with non-vanishing flux. Using the Killing spinor equations for linear flux, an explicit set of first-order bosonic equations for supersymmetric solutions is found. These solutions describe a warped product of a domain wall in four-dimensional space-time and a deformed G_2 manifold. It is shown how these domain walls arise from the perspective of the associated four-dimensional N=1 effective supergravity theories. We also discuss the inclusion of membrane and M5-brane sources.Comment: 30 pages, Late

    Stable Topologies of Event Horizon

    Get PDF
    In our previous work, it was shown that the topology of an event horizon (EH) is determined by the past endpoints of the EH. A torus EH (the collision of two EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In the present article, we examine the stability of the topology of the EH. We see that a simple case of a single spherical EH is unstable. Furthermore, in general, an EH with handles (a torus, a double torus, ...) is structurally stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe

    Infrared conductivity of a d_{x^2-y^2}-wave superconductor with impurity and spin-fluctuation scattering

    Full text link
    Calculations are presented of the in-plane far-infrared conductivity of a d_{x^2-y^2}-wave superconductor, incorporating elastic scattering due to impurities and inelastic scattering due to spin fluctuations. The impurity scattering is modeled by short-range potential scattering with arbitrary phase shift, while scattering due to spin fluctuations is calculated within a weak-coupling Hubbard model picture. The conductivity is characterized by a low-temperature residual Drude feature whose height and weight are controlled by impurity scattering, as well as a broad peak centered at 4 Delta_0 arising from clean-limit inelastic processes. Results are in qualitative agreement with experiment despite missing spectral weight at high energies.Comment: 29 pages (11 tar-compressed-uuencoded Postscript figures), REVTeX 3.0 with epsf macro

    Polynomial Hamiltonian form of General Relativity

    Get PDF
    Phase space of General Relativity is extended to a Poisson manifold by inclusion of the determinant of the metric and conjugate momentum as additional independent variables. As a result, the action and the constraints take a polynomial form. New expression for the generating functional for the Green functions is proposed. We show that the Dirac bracket defines degenerate Poisson structure on a manifold, and a second class constraints are the Casimir functions with respect to this structure. As an application of the new variables, we consider the Friedmann universe.Comment: 33 pages, 1 figure, corrected reference

    Creation of a Compact Topologically Nontrivial Inflationary Universe

    Full text link
    If inflation can occur only at the energy density V much smaller than the Planck density, which is the case for many inflationary models based on string theory, then the probability of quantum creation of a closed or an infinitely large open inflationary universe is exponentially suppressed for all known choices of the wave function of the universe. Meanwhile under certain conditions there is no exponential suppression for creation of topologically nontrivial compact flat or open inflationary universes. This suggests, contrary to the standard textbook lore, that compact flat or open universes with nontrivial topology should be considered a rule rather than an exception.Comment: 9 pages 2 figures, new materials and references adde

    Kahler Potential for M-theory on a G_2 Manifold

    Full text link
    We compute the moduli Kahler potential for M-theory on a compact manifold of G_2 holonomy in a large radius approximation. Our method relies on an explicit G_2 structure with small torsion, its periods and the calculation of the approximate volume of the manifold. As a verification of our result, some of the components of the Kahler metric are computed directly by integration over harmonic forms. We also discuss the modification of our result in the presence of co-dimension four singularities and derive the gauge-kinetic functions for the massless gauge fields that arise in this case.Comment: 31 pages, Latex. Altered discussion of truncation of field content, some typos corrected and references added. Version to appear in Phys. Rev .

    A ferromagnet with a glass transition

    Full text link
    We introduce a finite-connectivity ferromagnetic model with a three-spin interaction which has a crystalline (ferromagnetic) phase as well as a glass phase. The model is not frustrated, it has a ferromagnetic equilibrium phase at low temperature which is not reached dynamically in a quench from the high-temperature phase. Instead it shows a glass transition which can be studied in detail by a one step replica-symmetry broken calculation. This spin model exhibits the main properties of the structural glass transition at a solvable mean-field level.Comment: 7 pages, 2 figures, uses epl.cls (included

    Influence of Surface Passivation on the Friction and Wear Behavior of Ultrananocrystalline Diamond and Tetrahedral Amorphous Carbon Thin Films

    Get PDF
    Highly sp3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetrahedral amorphous carbon, or ta-C) and one that is polycrystalline with sp3 to disordered sp2 bonding is observed, no crystalline graphite formation is observed for either film. Rather, the primary solid-lubrication mechanism is the passivation of dangling bonds by OH and H from the dissociation of vapor-phase H2O. This vapor-phase lubrication mechanism is highly effective, producing friction coefficients as low as 0.078 for ta-C and 0.008 for UNCD, and wear rates requiring thousands of sliding passes to produce a few nanometers of wear

    Tensile Properties of Amorphous Diamond Films

    Get PDF
    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter

    The Isotropy of Compact Universes

    Get PDF
    We discuss the problem of the stability of the isotropy of the universe in the space of ever-expanding spatially homogeneous universes with a compact spatial topology. The anisotropic modes which prevent isotropy being asymptotically stable in Bianchi-type VIIhVII_h universes with non-compact topologies are excluded by topological compactness. Bianchi type VV and type VIIhVII_h universes with compact topologies must be exactly isotropic. In the flat case we calculate the dynamical degrees of freedom of Bianchi-type II and VII0VII_0 universes with compact 3-spaces and show that type VII0VII_0 solutions are more general than type II solutions for systems with perfect fluid, although the type II models are more general than type VII0VII_0 in the vacuum case. For particular topologies the 4-velocity of any perfect fluid is required to be non-tilted. Various consequences for the problems of the isotropy, homogeneity, and flatness of the universe are discussed.Comment: 22 pages in LaTeX2e with the amsmath packag
    • …
    corecore