17,369 research outputs found

    Consenting agents: semi-autonomous interactions for ubiquitous consent

    No full text
    Ubiquitous computing, given a regulatory environment that seems to favor consent as a way to empower citizens, introduces the possibility of users being asked to make consent decisions in numerous everyday scenarios such as entering a supermarket or walking down the street. In this note we outline a model of semi-autonomous consent (SAC), in which preference elicitation is decoupled from the act of consenting itself, and explain how this could protect desirable properties of informed consent without overwhelming users. We also suggest some challenges that must be overcome to make SAC a reality

    Observation of Strong Coulomb Blockade in Resistively Isolated Tunnel Junctions

    Full text link
    We report measurements of the Coulomb-blockade current in resistively isolated (R_{Isol} >> h/e^{2}) tunnel junctions for the temperature range 60mK WereportmeasurementsoftheCoulomb−blockadecurrentinresistivelyisolated(We report measurements of the Coulomb-blockade current in resistively isolated (R_{Isol}\gg h/e^{2})$ tunnel junctions for the temperature range 60mK < T < 230mK where the charging energy E_{c} is much greater than the thermal energy. A zero-bias resistance R_{0} of up to 10^{4}R_{T} (the tunnel resistance of the bare junction) is obtained. For eV << E_{c}, the I-V curves for a given R_{Isol} scale as a function of V/T, with I \propto V^{\alpha (R_{Isol})} over a range of V. The data agree well with numerical calculations of the tunneling rate that include environmental effects.Comment: 13 pages, 3 eps figure

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    On the Perturbations of Viscous Rotating Newtonian Fluids

    Get PDF
    The perturbations of weakly-viscous, barotropic, non-self-gravitating, Newtonian rotating fluids are analyzed via a single partial differential equation. The results are then used to find an expression for the viscosity-induced normal-mode complex eigenfrequency shift, with respect to the case of adiabatic perturbations. However, the effects of viscosity are assumed to have been incorporated in the unperturbed (equilibrium) model. This paper is an extension of the normal-mode formalism developed by Ipser & Lindblom for adiabatic pulsations of purely-rotating perfect fluids. The formulas derived are readily applicable to the perturbations of thin and thick accretion disks. We provide explicit expressions for thin disks, employing results from previous relativistic analyses of adiabatic normal modes of oscillation. In this case, we find that viscosity causes the fundamental p- and g- modes to grow while the fundamental c-mode could have either sign of the damping rate.Comment: Accepted for publication by The Astrophysical Journal. 11 pages, no figure

    K−K^- - nucleus relativistic mean field potentials consistent with kaonic atoms

    Full text link
    K−K^- atomic data are used to test several models of the K−K^- nucleus interaction. The t(ρ\rho)ρ\rho optical potential, due to coupled channel models incorporating the Λ\Lambda(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the Λ\Lambda(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit K−K^- optical potential is found to be strongly attractive, with a depth of 180 \pm 20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.Comment: revised, Phys. Rev. C in pres

    Isotopic Scaling in Nuclear Reactions

    Full text link
    A three parameter scaling relationship between isotopic distributions for elements with Z≀8\leq 8 has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed iso-scaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation and deeply inelastic scattering. The origins of this scaling behavior for the various reaction mechanisms are explained. For multifragmentation processes, the systematics is influenced by the density dependence of the asymmetry term of the equation of state.Comment: 10 Pages, 2 Figure

    Three Generations on the Quintic Quotient

    Get PDF
    A three-generation SU(5) GUT, that is 3x(10+5bar) and a single 5-5bar pair, is constructed by compactification of the E_8 heterotic string. The base manifold is the Z_5 x Z_5-quotient of the quintic, and the vector bundle is the quotient of a positive monad. The group action on the monad and its bundle-valued cohomology is discussed in detail, including topological restrictions on the existence of equivariant structures. This model and a single Z_5 quotient are the complete list of three generation quotients of positive monads on the quintic.Comment: 19 pages, LaTeX. v2: section on anomaly cancellation adde

    Resonant Magnetization Tunneling in Mn12 Acetate: The Absence of Inhomogeneous Hyperfine Broadening

    Full text link
    We present the results of a detailed study of the thermally-assisted-resonant-tunneling relaxation rate of Mn12 acetate as a function of an external, longitudinal magnetic field and find that the data can be fit extremely well to a Lorentzian function. No hint of inhomogeneous broadening is found, even though some is expected from the Mn nuclear hyperfine interaction. This inconsistency implies that the tunneling mechanism cannot be described simply in terms of a random hyperfine field.Comment: Some minor revisions, title changed, updated figures, two added notes, one added reference. RevTeX, 4 pages, 3 postscript figures. Submitted to Rapid Communication
    • 

    corecore