3,390 research outputs found

    Affiliation history and age similarity predict alliance formation in adult male bottlenose dolphins

    Full text link
    Male alliances are an intriguing phenomenon in the context of reproduction since, in most taxa, males compete over an indivisible resource, female fertilization. Adult male bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia, form long-term, multilevel alliances to sequester estrus females. These alliances are therefore critical to male reproductive success. Yet, the long-term processes leading to the formation of such complex social bonds are still poorly understood. To identify the criteria by which male dolphins form social bonds with other males, we adopted a long-term approach by investigating the ontogeny of alliance formation. We followed the individual careers of 59 males for 14 years while they transitioned from adolescence (8-14 years of age) to adulthood (15-21 years old). Analyzing their genetic relationships and social associations in both age groups, we found that the vast majority of social bonds present in adolescence persisted through time. Male associations in early life predict alliance partners as adults. Kinship patterns explained associations during adolescence but not during adulthood. Instead, adult males associated with males of similar age. Our findings suggest that social bonds among peers, rather than kinship, play a central role in the development of adult male polyadic cooperation in dolphins. Multilevel cooperation in adult male bottlenose dolphins is based on friendships that are formed among similarly aged males during their adolescence. Although cooperative behaviors in many animals are found among relatives, this is not the case in dolphins. Our findings reveal the existence of enduring friendships in a complex marine mammal society, similar to those that have been described in many primate species including humans

    Effect of Cyclooxygenase(COX)-1 and COX-2 inhibition on furosemide-induced renal responses and isoform immunolocalization in the healthy cat kidney

    Get PDF
    BACKGROUND: The role of cyclooxygenase(COX)-1 and COX-2 in the saluretic and renin-angiotensin responses to loop diuretics in the cat is unknown. We propose in vivo characterisation of isoform roles in a furosemide model by administering non-steroidal anti-inflammatory drugs (NSAIDs) with differing selectivity profiles: robenacoxib (COX-2 selective) and ketoprofen (COX-1 selective). RESULTS: In this four period crossover study, we compared the effect of four treatments: placebo, robenacoxib once or twice daily and ketoprofen once daily concomitantly with furosemide in seven healthy cats. For each period, urine and blood samples were collected at baseline and within 48Β h of treatment starting. Plasma renin activity (PRA), plasma and urinary aldosterone concentrations, glomerular filtration rate (GFR) and 24Β h urinary volumes, electrolytes and eicosanoids (PGE(2), 6-keto-PGF1(Ξ±,) TxB(2)), renal injury biomarker excretions [N-acetyl-beta-D-glucosaminidase (NAG) and Gamma-Glutamyltransferase] were measured. Urine volume (24Β h) and urinary sodium, chloride and calcium excretions increased from baseline with all treatments. Plasma creatinine increased with all treatments except placebo, whereas GFR was significantly decreased from baseline only with ketoprofen. PRA increased significantly with placebo and once daily robenacoxib and the increase was significantly higher with placebo compared to ketoprofen (10.5 ± 4.4 vs 4.9 ± 5.0Β ngΒ ml(βˆ’1) h(βˆ’1)). Urinary aldosterone excretion increased with all treatments but this increase was inhibited by 75Β % with ketoprofen and 65Β % with once daily robenacoxib compared to placebo. Urinary PGE(2) excretion decreased with all treatments and excretion was significantly lower with ketoprofen compared to placebo. Urinary TxB(2) excretion was significantly increased from baseline only with placebo. NAG increased from baseline with all treatments. Immunohistochemistry on post-mortem renal specimens, obtained from a different group of cats that died naturally of non-renal causes, suggested constitutive COX-1 and COX-2 co-localization in many renal structures including the macula densa (MD). CONCLUSIONS: These data suggest that both COX-1 and COX-2 could generate the signal from the MD to the renin secreting cells in cats exposed to furosemide. Co-localization of COX isoenzymes in MD cells supports the functional data reported here. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0598-z) contains supplementary material, which is available to authorized users

    Sildenafil Protects Endothelial Cells From Radiation-Induced Oxidative Stress

    Get PDF
    Introduction: The etiology of radiation-induced erectile dysfunction (ED) is complex and multifactorial, and it appears to be mainly atherogenic. Aim: To focus on vascular aspects of radiation-induced ED and to elucidate whether the protective effects of sildenafil are mediated by attenuation of oxidative stress and apoptosis in the endothelial cells. Methods: Bovine aortic endothelial cells (BAECs), with or without pretreatment of sildenafil (5 ΞΌM at 5 minutes before radiation), were used to test endothelial dysfunction in response to external beam radiation at 10–15 Gy. Generation of reactive oxygen species (ROS) was studied. Extracellular hydrogen peroxide (H2O2) was measured using the Amplex Red assay and intracellular H2O2 using a fluorescent sensor. In addition, ROS superoxide (O2β€’-) was measured using a O2β€’- chemiluminescence enhancer. Both H2O2 and O2β€’- are known to reduce the bioavailability of nitric oxide, which is the most significant chemical mediator of penile erection. Generation of cellular peroxynitrite (ONOOβˆ’) was measured using a chemiluminescence assay with the PNCL probe. Subsequently, we measured the activation of acid sphingomyelinase (ASMase) enzyme by radioenzymatic assay using [14C-methylcholine] sphingomyelin as substrate, and the generation of the proapoptotic C16-ceramide was assessed using the diacylglycerol kinase assay. Endothelial cells apoptosis was measured as a readout of these cells’ dysfunction. Main Outcome Measures: Single high-dose radiation therapy induced NADPH oxidases (NOXs) activation and ROS generation via the proapoptotic ASMase/ceramide pathway. The radio-protective effect of sildenafil on BAECs was due to inhibition of this pathway. Results: Here, we demonstrate for the first time that radiation activated NOXs and induced generation of ROS in BAECs. In addition, we showed that sildenafil significantly reduced radiation-induced O2β€’- and as a result there was reduction in the generation of peroxynitrite in these cells. Subsequently, sildenafil protected the endothelial cells from radiation therapy-induced apoptosis. Strengths and Limitations: This is the first study demonstrating that single high-dose radiation therapy induced NOXs activation, resulting in the generation of O2β€’- and peroxynitrite in endothelial cells. Sildenafil reduced ROS generation by inhibiting the ASMase/ceramide pathway. These studies should be followed in an animal model of ED. Conclusions: This study demonstrated that sildenafil protects BAECs from radiation-induced oxidative stress by reducing NOX-induced ROS generation, thus resulting in decreased endothelial dysfunction. Therefore, it provides a potential mechanism to better understand the atherogenic etiology of postradiation ED. Wortel RC, Mizrachi A, Li H, et al. Sildenafil Protects Endothelial Cells From Radiation-Induced Oxidative Stress. J Sex Med 2019;16:1721–1733. Β© 201

    Sequestration of Martian CO2 by mineral carbonation

    Get PDF
    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2

    Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes

    Get PDF
    Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. Β© 2013 Argyropoulos et al

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    Neutron Stars in Teleparallel Gravity

    Full text link
    In this paper we deal with neutron stars, which are described by a perfect fluid model, in the context of the teleparallel equivalent of general relativity. We use numerical simulations to find the relationship between the angular momentum of the field and the angular momentum of the source. Such a relation was established for each stable star reached by the numerical simulation once the code is fed with an equation of state, the central energy density and the ratio between polar and equatorial radii. We also find a regime where linear relation between gravitational angular momentum and moment of inertia (as well as angular velocity of the fluid) is valid. We give the spatial distribution of the gravitational energy and show that it has a linear dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with arXiv:1206.331

    Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    No full text
    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 β‰₯78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses

    Accurate Detection of Recombinant Breakpoints in Whole-Genome Alignments

    Get PDF
    We propose a novel method for detecting sites of molecular recombination in multiple alignments. Our approach is a compromise between previous extremes of computationally prohibitive but mathematically rigorous methods and imprecise heuristic methods. Using a combined algorithm for estimating tree structure and hidden Markov model parameters, our program detects changes in phylogenetic tree topology over a multiple sequence alignment. We evaluate our method on benchmark datasets from previous studies on two recombinant pathogens, Neisseria and HIV-1, as well as simulated data. We show that we are not only able to detect recombinant regions of vastly different sizes but also the location of breakpoints with great accuracy. We show that our method does well inferring recombination breakpoints while at the same time maintaining practicality for larger datasets. In all cases, we confirm the breakpoint predictions of previous studies, and in many cases we offer novel predictions

    Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes

    Get PDF
    Background \ud Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin– like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four \ud Caenorhabditis species. \ud \ud Methodology/Principal Findings \ud We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged \ud significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud \ud Conclusions \ud The gonochoristic species display a significantly longer lifespan (p < 0.0001)and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
    • …
    corecore