15,333 research outputs found
Stochastic methods for solving high-dimensional partial differential equations
We propose algorithms for solving high-dimensional Partial Differential
Equations (PDEs) that combine a probabilistic interpretation of PDEs, through
Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and
time-integration schemes are used to estimate pointwise evaluations of the
solution of a PDE. We use a sequential control variates algorithm, where
control variates are constructed based on successive approximations of the
solution of the PDE. Two different algorithms are proposed, combining in
different ways the sequential control variates algorithm and adaptive sparse
interpolation. Numerical examples will illustrate the behavior of these
algorithms
Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N
The development of a mm-spatial-resolution, resonant-response detector based
on a micrometric glass capillary array filled with liquid scintillator is
described. This detector was developed for Gamma Resonance Absorption (GRA) in
14N. GRA is an automatic-decision radiographic screening technique that
combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with
very good sensitivity and specificity to nitrogenous explosives. Detailed
simulation of the detector response to electrons and protons generated by the
9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a
mixed gamma-ray and neutron source. Towards this, a prototype capillary
detector was assembled, including the associated filling and readout systems.
Simulations and experimental results indeed show that proton tracks are
distinguishable from electron tracks at relevant energies, on the basis of a
criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure
Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor
We study macroscopic quantum tunneling of the magnetic moment in a
single-domain particle placed above the surface of a superconductor. Such a
setup allows one to manipulate the height of the energy barrier, preserving the
degeneracy of the ground state. The tunneling amplitude and the effect of the
dissipation in the superconductor are computed.Comment: RevTeX, 4 pages, 1 figure. Submitted to Phys. Rev. Let
Recurrent triploidy due to a failure to complete maternal meiosis II: whole-exome sequencing reveals candidate variants
Triploidy is a relatively common cause of miscarriage; however, recurrent triploidy has rarely been reported. A healthy 34-year-old woman was ascertained because of 18 consecutive miscarriages with triploidy found in all 5 karyotyped losses. Molecular results in a sixth loss were also consistent with triploidy. Genotyping of markers near the centromere on multiple chromosomes suggested that all six triploid conceptuses occurred as a result of failure to complete meiosis II (MII). The proband's mother had also experienced recurrent miscarriage, with a total of 18 miscarriages. Based on the hypothesis that an inherited autosomal-dominant maternal predisposition would explain the phenotype, whole-exome sequencing of the proband and her parents was undertaken to identify potential candidate variants. After filtering for quality and rarity, potentially damaging variants shared between the proband and her mother were identified in 47 genes. Variants in genes coding for proteins implicated in oocyte maturation, oocyte activation or polar body extrusion were then prioritized. Eight of the most promising candidate variants were confirmed by Sanger sequencing. These included a novel change in the PLCD4 gene, and a rare variant in the OSBPL5 gene, which have been implicated in oocyte activation upon fertilization and completion of MII. Several variants in genes coding proteins playing a role in oocyte maturation and early embryonic development were also identified. The genes identified may be candidates for the study in other women experiencing recurrent triploidy or recurrent IVF failur
Propagation of Avalanches in Mn-acetate: Magnetic Deflagration
Local time-resolved measurements of fast reversal of the magnetization of
single crystals of Mn12-acetate indicate that the magnetization avalanche
spreads as a narrow interface that propagates through the crystal at a constant
velocity that is roughly two orders of magnitude smaller than the speed of
sound. We argue that this phenomenon is closely analogous to the propagation of
a flame front (deflagration) through a flammable chemical substance.Comment: 5 pages, 5 figure
A stochastic perturbation of inviscid flows
We prove existence and regularity of the stochastic flows used in the
stochastic Lagrangian formulation of the incompressible Navier-Stokes equations
(with periodic boundary conditions), and consequently obtain a
\holderspace{k}{\alpha} local existence result for the Navier-Stokes
equations. Our estimates are independent of viscosity, allowing us to consider
the inviscid limit. We show that as , solutions of the stochastic
Lagrangian formulation (with periodic boundary conditions) converge to
solutions of the Euler equations at the rate of .Comment: 13 pages, no figures
The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine
We study the propagator of a non-relativistic, non-interacting particle in
any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an
external, flat spacetime in which two spatial regions, at time and
at time , are connected by two temporal wormholes, one leading from
the past side of to t the future side of and the other from the
past side of to the future side of . We express the propagator
explicitly in terms of those for ordinary, flat spacetime and for the two
wormholes; and from that expression we show that the propagator satisfies
completeness and unitarity in the initial and final ``chronal regions''
(regions without closed timelike curves) and its propagation from the initial
region to the final region is unitary. However, within the time machine it
satisfies neither completeness nor unitarity. We also give an alternative proof
of initial-region-to-final-region unitarity based on a conserved current and
Gauss's theorem. This proof can be carried over without change to most any
non-relativistic time-machine spacetime; it is the non-relativistic version of
a theorem by Friedman, Papastamatiou and Simon, which says that for a free
scalar field, quantum mechanical unitarity follows from the fact that the
classical evolution preserves the Klein-Gordon inner product
Preliminary studies for anapole moment measurements in rubidium and francium
Preparations for the anapole measurement in Fr indicate the possibility of
performing a similar measurement in a chain of Rb. The sensitivity analysis
based on a single nucleon model shows the potential for placing strong limits
on the nucleon weak interaction parameters. There are values of the magnetic
fields at much lower values than found before that are insensitive to first
order changes in the field. The anapole moment effect in Rb corresponds to an
equivalent electric field that is eighty times smaller than Fr, but the
stability of the isotopes and the current performance of the dipole trap in the
apparatus, presented here, are encouraging for pursuing the measurment.Comment: 16 pages, 6 figures. Accepted for publication in the J. Phys.
- …