2,304 research outputs found
Kinetic Anomalies in Addition-Aggregation Processes
We investigate irreversible aggregation in which monomer-monomer,
monomer-cluster, and cluster-cluster reactions occur with constant but distinct
rates K_{MM}, K_{MC}, and K_{CC}, respectively. The dynamics crucially depends
on the ratio gamma=K_{CC}/K_{MC} and secondarily on epsilon=K_{MM}/K_{MC}. For
epsilon=0 and gamma<2, there is conventional scaling in the long-time limit,
with a single mass scale that grows linearly in time. For gamma >= 2, there is
unusual behavior in which the concentration of clusters of mass k, c_k decays
as a stretched exponential in time within a boundary layer k<k* propto
t^{1-2/gamma} (k* propto ln t for gamma=2), while c_k propto t^{-2} in the bulk
region k>k*. When epsilon>0, analogous behaviors emerge for gamma<2 and gamma
>= 2.Comment: 6 pages, 2 column revtex4 format, for submission to J. Phys.
Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes
The mathematical formalism for linear quantum field theory on curved
spacetime depends in an essential way on the assumption of global
hyperbolicity. Physically, what lie at the foundation of any formalism for
quantization in curved spacetime are the canonical commutation relations,
imposed on the field operators evaluated at a global Cauchy surface. In the
algebraic formulation of linear quantum field theory, the canonical commutation
relations are restated in terms of a well-defined symplectic structure on the
space of smooth solutions, and the local field algebra is constructed as the
Weyl algebra associated to this symplectic vector space. When spacetime is not
globally hyperbolic, e.g. when it contains naked singularities or closed
timelike curves, a global Cauchy surface does not exist, and there is no
obvious way to formulate the canonical commutation relations, hence no obvious
way to construct the field algebra. In a paper submitted elsewhere, we report
on a generalization of the algebraic framework for quantum field theory to
arbitrary topological spaces which do not necessarily have a spacetime metric
defined on them at the outset. Taking this generalization as a starting point,
in this paper we give a prescription for constructing the field algebra of a
(massless or massive) Klein-Gordon field on an arbitrary background spacetime.
When spacetime is globally hyperbolic, the theory defined by our construction
coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4
On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations
We consider an active scalar equation that is motivated by a model for
magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive
equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast,
the critically diffusive equation is well-posed. In this case we give an
example of a steady state that is nonlinearly unstable, and hence produces a
dynamo effect in the sense of an exponentially growing magnetic field.Comment: We have modified the definition of Lipschitz well-posedness, in order
to allow for a possible loss in regularity of the solution ma
Hadamard States and Adiabatic Vacua
Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style
Gravitational waves about curved backgrounds: a consistency analysis in de Sitter spacetime
Gravitational waves are considered as metric perturbations about a curved
background metric, rather than the flat Minkowski metric since several
situations of physical interest can be discussed by this generalization. In
this case, when the de Donder gauge is imposed, its preservation under
infinitesimal spacetime diffeomorphisms is guaranteed if and only if the
associated covector is ruled by a second-order hyperbolic operator which is the
classical counterpart of the ghost operator in quantum gravity. In such a wave
equation, the Ricci term has opposite sign with respect to the wave equation
for Maxwell theory in the Lorenz gauge. We are, nevertheless, able to relate
the solutions of the two problems, and the algorithm is applied to the case
when the curved background geometry is the de Sitter spacetime. Such vector
wave equations are studied in two different ways: i) an integral
representation, ii) through a solution by factorization of the hyperbolic
equation. The latter method is extended to the wave equation of metric
perturbations in the de Sitter spacetime. This approach is a step towards a
general discussion of gravitational waves in the de Sitter spacetime and might
assume relevance in cosmology in order to study the stochastic background
emerging from inflation.Comment: 17 pages. Misprints amended in Eqs. 50, 54, 55, 75, 7
Generic effective source for scalar self-force calculations
A leading approach to the modelling of extreme mass ratio inspirals involves
the treatment of the smaller mass as a point particle and the computation of a
regularized self-force acting on that particle. In turn, this computation
requires knowledge of the regularized retarded field generated by the particle.
A direct calculation of this regularized field may be achieved by replacing the
point particle with an effective source and solving directly a wave equation
for the regularized field. This has the advantage that all quantities are
finite and require no further regularization. In this work, we present a method
for computing an effective source which is finite and continuous everywhere,
and which is valid for a scalar point particle in arbitrary geodesic motion in
an arbitrary background spacetime. We explain in detail various technical and
practical considerations that underlie its use in several numerical self-force
calculations. We consider as examples the cases of a particle in a circular
orbit about Schwarzschild and Kerr black holes, and also the case of a particle
following a generic time-like geodesic about a highly spinning Kerr black hole.
We provide numerical C code for computing an effective source for various
orbital configurations about Schwarzschild and Kerr black holes.Comment: 24 pages, 7 figures, final published versio
Second-order gravitational self-force
We derive an expression for the second-order gravitational self-force that
acts on a self-gravitating compact-object moving in a curved background
spacetime. First we develop a new method of derivation and apply it to the
derivation of the first-order gravitational self-force. Here we find that our
result conforms with the previously derived expression. Next we generalize our
method and derive a new expression for the second-order gravitational
self-force. This study also has a practical motivation: The data analysis for
the planned gravitational wave detector LISA requires construction of waveforms
templates for the expected gravitational waves. Calculation of the two leading
orders of the gravitational self-force will enable one to construct highly
accurate waveform templates, which are needed for the data analysis of
gravitational-waves that are emitted from extreme mass-ratio binaries.Comment: 35 page
"Peeling property" for linearized gravity in null coordinates
A complete description of the linearized gravitational field on a flat
background is given in terms of gauge-independent quasilocal quantities. This
is an extension of the results from gr-qc/9801068. Asymptotic spherical
quasilocal parameterization of the Weyl field and its relation with Einstein
equations is presented. The field equations are equivalent to the wave
equation. A generalization for Schwarzschild background is developed and the
axial part of gravitational field is fully analyzed. In the case of axial
degree of freedom for linearized gravitational field the corresponding
generalization of the d'Alembert operator is a Regge-Wheeler equation. Finally,
the asymptotics at null infinity is investigated and strong peeling property
for axial waves is proved.Comment: 27 page
Lower Bounds for Heights in Relative Galois Extensions
The goal of this paper is to obtain lower bounds on the height of an
algebraic number in a relative setting, extending previous work of Amoroso and
Masser. Specifically, in our first theorem we obtain an effective bound for the
height of an algebraic number when the base field is a
number field and is Galois. Our second result
establishes an explicit height bound for any non-zero element which is
not a root of unity in a Galois extension , depending on
the degree of and the number of conjugates of
which are multiplicatively independent over . As a consequence, we
obtain a height bound for such that is independent of the
multiplicative independence condition
Vacuum polarization for lukewarm black holes
We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordström–de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (“lukewarm” black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case
- …